Advertisement

Microchimica Acta

, Volume 174, Issue 3–4, pp 383–390 | Cite as

Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide

  • Fangyuan Zhao
  • Fei Wang
  • Weining Zhao
  • Jing Zhou
  • Yang Liu
  • Lina Zou
  • Baoxian YeEmail author
Original Paper

Abstract

We report on a voltammetric sensor for caffeine that is based on a glassy carbon electrode modified with Nafion and graphene oxide (GO). It exhibits a good affinity for caffeine (resulting from the presence of Nafion), and excellent electrochemical response (resulting from the pressence of GO) for the oxidation of caffeine. The electrode enables the determination of caffeine in the range from 4.0 × 10−7 to 8.0 × 10−5 mol L−1, with a detection limit of 2.0 × 10−7 mol L−1. The sensor displays good stability, reproducibility, and high sensitivity. It was successfully applied to the quantitative determination of caffeine in beverages.

Figure

A new electrochemical sensor, based on graphene oxide (GO)-Nafion composite film modified glassy carbon electrode (GCE), was developed and used for detection of trace amounts of caffeine in a wide range with a low detection limit.

Keywords

Caffeine Nafion Graphene oxide Modified electrode Voltammetry 

Notes

Acknowledgments

The authors express their great thanks for the support from the National Natural Science Foundation of China (Grant Nos. 20875083 & 20775073) and the Innovation Scientists & Technicians Troop Construction Projects of Zhengzhou City (10LJRC192).

References

  1. 1.
    Bolton S, Null G (1981) Caffeine psychological effects, use and abuse. J Orthomol Psychiatr 10:202–211Google Scholar
  2. 2.
    Peri-Okonny UL, Wang SX, Stubbs RJ, Guzman NA (2005) Determination of caffeine and its metabolites in urine by capillary electrophoresis-mass spectrometry. Electrophoresis 26:2652–2663. doi: 10.1002/elps.200500231 CrossRefGoogle Scholar
  3. 3.
    Blecher R, Lingens F (1977) The metabolism of caffeine by a Pseudomonas putida strain. Hoppe Seylers Z Physiol Chem 358:807–817CrossRefGoogle Scholar
  4. 4.
    Pons FW, Müller P (1990) Induction of frameshift mutations by caffeine in Escherichia coli K12. Mutagen 5:173–177. doi: 10.1093/mutage/5.2.173 CrossRefGoogle Scholar
  5. 5.
    Kalmar JM, Cafarelli E (1999) Effects of caffeine on neuromuscular function. J Appl Physiol 87:801–808Google Scholar
  6. 6.
    Kerrigan S, Lindsey T (2005) Fatal caffeine overdose: two case reports. Forensic Sci Int 153:67–69. doi: 10.1016/j.forsciint.2005.04.016 CrossRefGoogle Scholar
  7. 7.
    Brunetti B, Desimoni E, Casati P (2007) Determination of caffeine at a nafion-covered glassy carbon electrode. Electroanalysis 19:385–388. doi: 10.1002/elan.200603679 CrossRefGoogle Scholar
  8. 8.
    Yang SL, Yang R, Li G, Qua LB, Li JJ, Yu LL (2010) Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J Electroanal Chem 639:77–82. doi: 10.1016/j.jelechem.2009.11.025 CrossRefGoogle Scholar
  9. 9.
    Spataru N, Sarada BV, Tryk DA, Fujishima A (2002) Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 14:721–728. doi: 10.1002/1521-4109(200206) CrossRefGoogle Scholar
  10. 10.
    Martínez-Huitle CA, Suely Fernandes N, Ferro S, De Battisti A, Quiroz MA (2010) Fabrication and application of Nafion-modified boron-doped diamond electrode as sensor for detecting caffeine. Diam Relat Mater 19:1188–1193. doi: 10.1016/j.diamond.2010.05.004 CrossRefGoogle Scholar
  11. 11.
    Valdés MG, Valdés González AC, García Calzón JA, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19. doi: 10.1007/s00604-009-0165-z CrossRefGoogle Scholar
  12. 12.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  13. 13.
    Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157. doi: 10.1039/c002690p CrossRefGoogle Scholar
  14. 14.
    Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. doi: 10.1039/b923596e CrossRefGoogle Scholar
  15. 15.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi: 10.1038/nnano.2009.58 CrossRefGoogle Scholar
  16. 16.
    Joung D, Chunder A, Zhai L, Khondaker SI (2010) High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21:165202. doi: 10.1088/0957-4484/21/16/165202 CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay J, Mukherjee A, Hamilton CE, Kang J, Chakraborty S, Guo W, Kelly KF, Barron AR, Billups WE (2008) Graphite epoxide. J Am Chem Soc 130:5414–5415. doi: 10.1021/ja711063f CrossRefGoogle Scholar
  18. 18.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi: 10.1038/nature04969 CrossRefGoogle Scholar
  19. 19.
    Schrenk MJ, Villigram RE, Torrence NJ, Brancato SJ, Minteer SD (2002) Effects of mixture casting Nafion with quaternary ammonium bromide salts on the ion-exchange capacity and mass transport in the membranes. J Membr Sci 205:3–10. doi: 10.1016/S0376-7388(02)00031-5 CrossRefGoogle Scholar
  20. 20.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. doi: 10.1021/cm981085u CrossRefGoogle Scholar
  21. 21.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  22. 22.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi: 10.1038/nnano.2007.451 CrossRefGoogle Scholar
  23. 23.
    Ly SY, Jung YS, Kim MH, Han IK, Jung WW, Kim HS (2004) Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry. Microchim Acta 146:207–213. doi: 10.1007/s00604-004-0209-3 CrossRefGoogle Scholar
  24. 24.
    American Beverage Association, Nutrition & Health, Beverage ingredients, Caffeine. <http://www.ameribev.org/files/caffeine-levels.pdf> (accessed February, 2011)

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fangyuan Zhao
    • 1
  • Fei Wang
    • 1
    • 2
  • Weining Zhao
    • 1
  • Jing Zhou
    • 1
  • Yang Liu
    • 1
  • Lina Zou
    • 1
  • Baoxian Ye
    • 1
    Email author
  1. 1.Department of ChemistryZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Department of Material and Chemistry EngineeringHenan Institute of EngineeringZhengzhouChina

Personalised recommendations