Microchimica Acta

, Volume 174, Issue 3–4, pp 303–309 | Cite as

Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes

  • Jing Ren
  • Tian-Fang KangEmail author
  • Rui Xue
  • Chao-Nan Ge
  • Shui-Yuan Cheng
Original Paper


We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodíc current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples.


A tyrosinase and carbon nanotubes (MWNTs) modified glassy carbon electrode was fabricated and used for the sensitive detection of phenol. The reduction peak of benzoquinone produced by enzymatic reaction of phenol was greatly enhanced due to the presence of MWNTs(c)


Tyrosinase Multiwalled carbon nanotubes Electrochemical biosensors Phenols 



This work was supported by the National Natural Science Foundation of China (No. 20247002), Beijing Natural Science Foundation (No.8102009), the Beijing Municipal Education Commission Scientific Technological Project Foundation (No. KZ201110005006) and Beijing Municipal institution of higher learning academic innovating group projects (No. PHR 201007105).


  1. 1.
    Li YF, Liu ZM, Liu YL, Yang YH, Shen GL, Yu RQ (2006) A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem 349:33–40CrossRefGoogle Scholar
  2. 2.
    Rajesh TW, Kaneto K (2004) Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3-aminopropyl pyrrole-co-pyrrole) film. Sens Actuators B Chem 102:271–277CrossRefGoogle Scholar
  3. 3.
    Lupetti KO, Rocha FRP, Fatibello-Filho O (2004) An improved flow system for phenols determination exploiting multicommutation and long pathlength spectrophotometry. Talanta 62:463–467CrossRefGoogle Scholar
  4. 4.
    Vanbeneden N, Delvaux F, Delvaux FR (2006) Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection. J Chromatogr A 1136:237–242CrossRefGoogle Scholar
  5. 5.
    Portaccio M, Tuoro DD, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003–2008CrossRefGoogle Scholar
  6. 6.
    Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D (2007) Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens Bioelectron 23:60–65CrossRefGoogle Scholar
  7. 7.
    Zhang J, Lei JP, Liu YY, Zhao JW, Ju HG (2009) Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens Bioelectron 24:1858–1863CrossRefGoogle Scholar
  8. 8.
    Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523:86–92CrossRefGoogle Scholar
  9. 9.
    Abdullah J, Ahmada M, Heng LY, Karuppiah N, Sidek H (2006) Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol–gel silicate for MBTH immobilization. Talanta 70:527–532CrossRefGoogle Scholar
  10. 10.
    Cosnier S, Ionescu RE, Holzinger M (2008) Aqueous dispersions of SWCNTs using pyrrolic surfactants for the electro-generation of homogeneous nanotube composites. Application to the design of an amperometric biosensor. J Mater Chem 18:5129–5133CrossRefGoogle Scholar
  11. 11.
    Liu ZM, Liu YL, Yang HF, Yang Y, Shen GL, Yu RQ (2005) A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal Chim Acta 533:3–9CrossRefGoogle Scholar
  12. 12.
    Hervás Pérez JP, Sánchez-Paniagua López M, López-Cabarcos E, López-Ruiz B (2006) Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelectron 22:429–439CrossRefGoogle Scholar
  13. 13.
    Shan D, Zhu MJ, Han E, Xue HG, Cosnier S (2007) Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor. Biosens Bioelectron 23:648–654CrossRefGoogle Scholar
  14. 14.
    Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol A. Biosens Bioelectron 26:43–49CrossRefGoogle Scholar
  15. 15.
    Liu SQ, Yu JH, Ju HX (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J Electroanal Chem 540:61–67CrossRefGoogle Scholar
  16. 16.
    Xia W, Li YY, Wan YJ, Chen T, Wei J, Lin Y, Xu SQ (2010) Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles. Biosens Bioelectron 25:2253–2258CrossRefGoogle Scholar
  17. 17.
    Wang P, Liu M, Kan JQ (2009) Amperometric phenol biosensor based on polyaniline. Sens Actuators B Chem 140:577–584CrossRefGoogle Scholar
  18. 18.
    Wang G, Xu JJ, Ye LH, Zhu JJ, Chen HY (2002) Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 57:33–38CrossRefGoogle Scholar
  19. 19.
    Dempsey E, Diamond D, Collier A (2004) Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens Bioelectron 20:367–377CrossRefGoogle Scholar
  20. 20.
    Xue HG, Shen ZQ (2002) A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline–polyacrylonitrile composite matrix. Talanta 57:289–295CrossRefGoogle Scholar
  21. 21.
    Yildiz HB, Castillo J, Guschin DA, Toppare L, Schuhmann W (2007) Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer. Microchim Acta 159:27–34CrossRefGoogle Scholar
  22. 22.
    Zhang T, Tian B, Kong J, Yang P, Liu B (2003) A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix. Anal Chim Acta 489:199–206CrossRefGoogle Scholar
  23. 23.
    Yu JH, Liu SQ, Ju HX (2003) Mediator-free phenol sensor based on titania sol–gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514CrossRefGoogle Scholar
  24. 24.
    Zejli H, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol–gel immobilization. Anal Chim Acta 612:198–203CrossRefGoogle Scholar
  25. 25.
    Campuzano S, Serra B, Pedrero M, Manuel J, de Villena F, Pingarrón JM (2003) Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors. Anal Chim Acta 494:187–197CrossRefGoogle Scholar
  26. 26.
    Tatsuma T, Sato T (2004) Self-wiring from tyrosinase to an electrode with redox polymers. J Electroanal Chem 572:15–19CrossRefGoogle Scholar
  27. 27.
    Anh TM, Dzyadevych SV, Soldatkin AP, Chien ND, Jaffrezic-Renault N, Chovelon JM (2002) Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions. Talanta 56:627–634CrossRefGoogle Scholar
  28. 28.
    Rogers KR, Becker JY, Cembrano J (2000) Improved selective electrocatalytic oxidation of phenols by tyrosinase-based carbon paste electrode biosensor. Electrochim Acta 45:4373–4379CrossRefGoogle Scholar
  29. 29.
    Kim MA, Lee WY (2003) Amperometric phenol biosensor based on sol–gel silicate/Nafion composite film. Anal Chim Acta 479:143–150CrossRefGoogle Scholar
  30. 30.
    Li C (2007) Voltammetric determination of 2-chlorophenol using a glassy carbon electrode coated with multi-wall carbon nanotube-dicetyl phosphate film. Microchim Acta 157:21–26CrossRefGoogle Scholar
  31. 31.
    Zheng YQ, Yang CZ, Pu WH, Zhang JD (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21–26CrossRefGoogle Scholar
  32. 32.
    Zhang H, Zhao JS, Liu HT, Liu RM, Wang HS, Liu JF (2010) Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode. Microchim Acta 169:277–282CrossRefGoogle Scholar
  33. 33.
    Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386CrossRefGoogle Scholar
  34. 34.
    Jiang CM, Chen H, Yu C, Zhang S, Liu BH, Kong JL (2009) Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde. Electrochim Acta 54:1134–1140CrossRefGoogle Scholar
  35. 35.
    Li J, Jessica EK, Alan MC, Hua C, Tee NH, Qi Y, Wendy F, Jie H, Meyyapan M (2005) Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 17:15–27CrossRefGoogle Scholar
  36. 36.
    Huang JL, Tsai YC (2009) Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode. Sens Actuators B Chem 140:267–272CrossRefGoogle Scholar
  37. 37.
    Korkut S, Keskinler B, Erhan E (2008) An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76:1147–1152CrossRefGoogle Scholar
  38. 38.
    Yin HS, Zhou YL, Xu J, Ai SY, Cui L, Zhu LS (2010) Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta 659:144–150CrossRefGoogle Scholar
  39. 39.
    Sanz VC, Mena M, González-Cortés A, Yanez-Sedeno P, Pingarrón J (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8CrossRefGoogle Scholar
  40. 40.
    Vedrine C, Fabiano S, Tran-Minh C (2003) Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 59:535–544CrossRefGoogle Scholar
  41. 41.
    Wang J, Liu J, Cepra G (1997) Thermal stabilization of enzymes immobilized within carbon paste electrodes. Anal Chem 69:3124–3127CrossRefGoogle Scholar
  42. 42.
    Kong LM, Huang SS, Yue ZL, Peng B, Li MY, Zhang J (2009) Sensitive mediator-free tyrosinase biosensor for the determination of 2,4-dichlorophenol. Microchim Acta 165:203–209CrossRefGoogle Scholar
  43. 43.
    Diaconu M, Litescu SC, Radu GL (2011) Bienzymatic sensor based on the use of redox enzymes and chitosan–MWCNT nanocomposite. Evaluation of totalphenolic content in plant extracts. Microchim Acta 172:177–184CrossRefGoogle Scholar
  44. 44.
    Tsai YC, Chiu CC (2007) Amperometric biosensors based on multiwalled carbon nanotube—Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sens Actuators B 125:10–16CrossRefGoogle Scholar
  45. 45.
    Chen J, Jin YL (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169:249–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jing Ren
    • 1
  • Tian-Fang Kang
    • 1
    Email author
  • Rui Xue
    • 1
  • Chao-Nan Ge
    • 1
  • Shui-Yuan Cheng
    • 1
  1. 1.College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations