Microchimica Acta

, Volume 174, Issue 3–4, pp 231–238 | Cite as

Surface activation of plasma-patterned carbon nanotube based DNA sensing electrodes

  • Eun Jin Park
  • Joon-Hyung Jin
  • Joon Hyub Kim
  • Nam Ki Min
Original Paper

Abstract

We have studied the effect of treatment of multiwalled carbon nanotubes (MWCNTs) for use in DNA-based biosensors with oxygen plasma. Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film in a lab-made plasma chamber. The resulting electrodes exhibited a dramatic change in the morphology of their surface, the chemical composition, and the electrochemical properties in terms of peak current and peak potential separation. The electrodes also showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes. Plasma treatment was optimized and electrodes were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential pulse voltammetry.

Figure

Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film. The electrodes showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes

Keywords

MWCNT O2 plasma treatment Electrochemical analysis DNA sensor 

Notes

Acknowledgment

This work was supported by Grant No. K20601000002-07E0100-00210 from Korea Foundation for International Cooperation of Science & Technology.

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121CrossRefGoogle Scholar
  3. 3.
    Xing YC, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21(9):4185–4190. doi: 10.1021/la047268e CrossRefGoogle Scholar
  4. 4.
    Merkoçi A (2005) Carbon nanotubes in analytical sciences. Microchim Acta 152(3–4):157–174. doi: 10.1007/s00604-005-0439-z Google Scholar
  5. 5.
    Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958. doi: 10.1039/b201013p CrossRefGoogle Scholar
  6. 6.
    Merkoci A, Pumera M, Llopis X, Perez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC, Trends Anal Chem 24(9):826–838. doi: 10.1016/j.trac.2005.03.019 CrossRefGoogle Scholar
  7. 7.
    Yang T, Zhang W, Du M, Jiao K (2008) A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene. Talanta 75(4):987–994. doi: 10.1016/j.talanta.2007.12.049 CrossRefGoogle Scholar
  8. 8.
    Min K, Yoo YJ (2009) Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta 80(2):1007–1011CrossRefGoogle Scholar
  9. 9.
    Zhou N, Yang T, Jiang C, Du M, Jiao K (2009) Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au-nano-CNT/PAN(nano) films. Talanta 77(3):1021–1026. doi: 10.1016/j.talanta.2008.07.058 CrossRefGoogle Scholar
  10. 10.
    Lee TMH, Li LL, Hsing IM (2003) Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir 19(10):4338–4343. doi: 10.1021/la0270385 CrossRefGoogle Scholar
  11. 11.
    Fang HT, Liu CG, Chang L, Feng L, Min L, Cheng HM (2004) Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem Mater 16(26):5744–5750. doi: 10.1021/cm035263h CrossRefGoogle Scholar
  12. 12.
    Zhao W, Wang H, Qin X, Wang X, Zhao Z, Miao Z, Chen L, Shan M, Fang Y, Chen Q (2009) A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 80(2):1029–1033CrossRefGoogle Scholar
  13. 13.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14(3):225–230CrossRefGoogle Scholar
  14. 14.
    Yadegari H, Jabbari A, Heli H, Moosavi-Movahedi AA, Karimian K, Khodadadi A (2008) Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode. Electrochim Acta 53(6):2907–2916. doi: 10.1016/j.electacta.2007.11.003 CrossRefGoogle Scholar
  15. 15.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode. Microchem J 73(3):325–333CrossRefGoogle Scholar
  16. 16.
    Qiu Y, Fan H, Liu X, Ai S, Tang T, Han R (2010) Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation. Microchim Acta 171(3–4):363–369. doi: 10.1007/s00604-010-0437-7 CrossRefGoogle Scholar
  17. 17.
    Lee CS, Baker SE, Marcus MS, Yang WS, Eriksson MA, Hamers RJ (2004) Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes. Nano Lett 4(9):1713–1716. doi: 10.1021/nl048995x CrossRefGoogle Scholar
  18. 18.
    Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3(5):597–602. doi: 10.1021/nl0340677 CrossRefGoogle Scholar
  19. 19.
    Cai H, Cao XN, Jiang Y, He PG, Fang YZ (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375(2):287–293. doi: 10.1007/s00216-002-1652-9 Google Scholar
  20. 20.
    Lee J-Y, Park E-J, Lee C-J, Kim S-W, Pak JJ, Min NK (2009) Flexible electrochemical biosensors based on O2 plasma functionalized MWCNT. Thin Solid Films 517(14):3883–3887. doi: 10.1016/j.tsf.2009.01.130 CrossRefGoogle Scholar
  21. 21.
    Wang R, Xue C, Gao M, Qi H, Zhang C (2010) Ultratrace voltammetric method for the detection of DNA sequence related to human immunodeficiency virus type 1. Microchim Acta 172(3–4):291–297. doi: 10.1007/s00604-010-0490-2 Google Scholar
  22. 22.
    Chen G, Shin DH, Kim S, Roth S, Lee CJ (2010) Improved field emission stability of thin multiwalled carbon nanotube emitters. Nanotechnology 21Google Scholar
  23. 23.
    Lin XH, Wu P, Chen W, Zhang YF, Xia XH (2007) Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogenous leukemia by using methylene blue. Talanta 72(2):468–471. doi: 10.1016/j.talanta.2006.11.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Eun Jin Park
    • 1
  • Joon-Hyung Jin
    • 1
  • Joon Hyub Kim
    • 1
  • Nam Ki Min
    • 1
  1. 1.Department of Biomicrosystem TechnologyKorea UniversitySeoulKorea

Personalised recommendations