Microchimica Acta

, Volume 173, Issue 1–2, pp 241–247 | Cite as

Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film

  • Yang FanEmail author
  • Jin-Hang Liu
  • Hai-Ting Lu
  • Qin Zhang
Original Paper


We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM−1 for Trp and Tyr, respectively.


The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.


Graphene TiO2-graphene nanocomposite Electrochemical sensor Tryptophan Tyrosine 



This work was financially supported by the National Natural Science Foundation of China (No. 21002082) and the Key Project of Chinese Ministry of Education (No. 210129).


  1. 1.
    Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. NS Arch Pharmacol 303:157CrossRefGoogle Scholar
  2. 2.
    Agazzi A, De Ponti F, De Giorgio R, Candura SM, Anselmi L, Cervio E, Di Nucci A, Tonini M (2003) Review of the implications of dietary tryptophan intake in patients with irritable bowel syndrome and psychiatric disorders. Dig Liver Dis 5:590CrossRefGoogle Scholar
  3. 3.
    Alaejos MS, Garcıía Montelongo FJ (2004) Application of amperometric biosensors to the determination of vitamins and α-amino acids. Chem Rev 104:3239CrossRefGoogle Scholar
  4. 4.
    Lawrence NS, Beckett EL, Davis J, Compton RG (2002) Advances in the voltammetric analysis of small biologically relevant compounds. Anal Biochem 303:1CrossRefGoogle Scholar
  5. 5.
    Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182CrossRefGoogle Scholar
  6. 6.
    Jin GP, Lin XQ (2004) The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun 6:454CrossRefGoogle Scholar
  7. 7.
    Xu Q, Wang SF (2005) Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 151:47CrossRefGoogle Scholar
  8. 8.
    Vasjari M, Merkoci A, Hart JP, Alegret S (2005) Amino acid determination using screen-printed electrochemical sensors. Microchim Acta 150:233CrossRefGoogle Scholar
  9. 9.
    Zhao GH, Qi Y, Tian Y (2006) Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis 18:830CrossRefGoogle Scholar
  10. 10.
    Jin GP, Peng X, Chen QZ (2008) Preparation of novel arrays silver nanoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan’s oxidation. Electroanalysis 20:907CrossRefGoogle Scholar
  11. 11.
    Yu X, Mai Z, Xiao Y, Zou X (2008) Electrochemical behavior and determination of L-Tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis 20:1246CrossRefGoogle Scholar
  12. 12.
    Okuno J, Maehashi K (2007) Single-walled carbon nanotube-arrayed microelectrode chip for electrochemical analysis. Electrochem Commun 9:13CrossRefGoogle Scholar
  13. 13.
    Huang KJ, Luo DF, Xie WZ, Yu YS (2008) Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloids Surf B 61:176CrossRefGoogle Scholar
  14. 14.
    Li C (2006) Voltammetric determination of tyrosine based on an L-serine polymer film electrode. Colloids Surf B 50:147CrossRefGoogle Scholar
  15. 15.
    Raoof JB, Ojani R, Hassan KM (2008) Carbon paste electrode incorporating 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone for electrocatalytic and voltammetric determination of tryptophan. Electroanalysis 20:1259CrossRefGoogle Scholar
  16. 16.
    Moreno L, Merkoci A, Alegret S, Hernández-Cassou S, Saurina J (2004) Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Anal Chim Acta 507:247CrossRefGoogle Scholar
  17. 17.
    MacDonald SM, Roscoe SG (1997) Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides. Electrochim Acta 42:1189CrossRefGoogle Scholar
  18. 18.
    Quintana C, Suárez S, Hernández L (2010) Nanostructures on gold electrodes for the development of an L-tyrosine electrochemical sensor based on host–guest supramolecular interactions. Sens Actuators B 149:129CrossRefGoogle Scholar
  19. 19.
    Spãtaru N, Sarada BV, Popa E, Tryk DA, Fujishima A (2001) Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem 73:514CrossRefGoogle Scholar
  20. 20.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027Google Scholar
  21. 21.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954CrossRefGoogle Scholar
  22. 22.
    Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157CrossRefGoogle Scholar
  23. 23.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5063Google Scholar
  24. 24.
    Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520CrossRefGoogle Scholar
  25. 25.
    Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959CrossRefGoogle Scholar
  26. 26.
    Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637CrossRefGoogle Scholar
  27. 27.
    Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070CrossRefGoogle Scholar
  28. 28.
    Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403CrossRefGoogle Scholar
  29. 29.
    Wang K, Liu Q, Wu XY, Guan QM, Li HN (2010) Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta 82:372CrossRefGoogle Scholar
  30. 30.
    Jin E, Lu X, Cui L, Chao D, Wang C (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55:7230CrossRefGoogle Scholar
  31. 31.
    Yin H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 82:1193CrossRefGoogle Scholar
  32. 32.
    Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids Surf B 83:78CrossRefGoogle Scholar
  33. 33.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  34. 34.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771CrossRefGoogle Scholar
  35. 35.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558CrossRefGoogle Scholar
  36. 36.
    Peng W, Wang Z, Yoshizawa N, Hatoria H, Hirotsub T (2008) Lamellar carbon nanosheets function as templates for two-dimensional deposition of tubular titanate. Chem Commun 44:4348CrossRefGoogle Scholar
  37. 37.
    Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He Z, Cao YL, Yuan G, Song H, Chen L, Luo L, Cheng HM, Zhang WJ, Bello I, Lee ST (2010) Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4:3482CrossRefGoogle Scholar
  38. 38.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380CrossRefGoogle Scholar
  39. 39.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yang Fan
    • 1
    Email author
  • Jin-Hang Liu
    • 1
  • Hai-Ting Lu
    • 1
  • Qin Zhang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringXinyang Normal UniversityXinyangPeople’s Republic of China

Personalised recommendations