Advertisement

Microchimica Acta

, Volume 173, Issue 1–2, pp 189–197 | Cite as

Microfluidic robotic device coupled with electrochemical sensor field for handling of paramagnetic micro-particles as a tool for determination of plant mRNA

  • Dalibor Huska
  • Vojtech Adam
  • Petr Babula
  • Libuse Trnkova
  • Jaromir Hubalek
  • Josef Zehnalek
  • Ladislav Havel
  • Rene KizekEmail author
Original Paper

Abstract

The expression of genes responsible for the biosynthesis of stress proteins corresponds to the exposition of an organism to abiotic and/or biotic stress. We utilize two types of paramagnetic particles for isolation of total mRNA from early somatic embryos of Norway Spruce (Picea abies /L./ Karst.) and maize plants (Zea mays L.) treated with cadmium(II) ions. The paramagnetic particles were evaluated for analysis of real samples, and poly-adenine was used as a model mRNA. Various approaches (from non-automatic to fully automatic) were tested in terms of handling the particles.

Figa

Microfluidic robotic device coupled with electrochemical sensor field

Keywords

Electrochemical detection Microfluidics Environmental stress Cadmium ions Paramagnetic particles 

Notes

Acknowledgement

The financial support from the grant NANOSEMED KAN208130801, INCHEMBIOL MSM0021622412 and REMEDTECH GACR 522/07/0692 is highly acknowledged. The authors wish to express their thanks to Jiri Baloun for excellent technical assistance.

Supplementary material

604_2011_545_MOESM1_ESM.doc (3 mb)
ESM 1 (DOC 3080 kb)

References

  1. 1.
    Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146CrossRefGoogle Scholar
  2. 2.
    Zehnalek J, Vacek J, Kizek R (2004) Application of higher plants in phytoremetiation of heavy metals. Listy Cukrov Reparske 120:220Google Scholar
  3. 3.
    Zehnalek J, Adam V, Kizek R (2004) Influence of heavy metals on production of protecting compounds in agriculture plants. Listy Cukrov Reparske 120:222Google Scholar
  4. 4.
    Greger M, Ogren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83:129CrossRefGoogle Scholar
  5. 5.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711CrossRefGoogle Scholar
  6. 6.
    Babula P, Ryant P, Adam V, Zehnalek J, Havel L, Kizek R (2009) The role of sulphur in cadmium(II) ions detoxification demonstrated in in vitro model: Dionaea muscipula Ell. Environ Chem Lett 7:353CrossRefGoogle Scholar
  7. 7.
    Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins—the principal heavy-metal complexing peptides of higher-plants. Science 230:674CrossRefGoogle Scholar
  8. 8.
    Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825CrossRefGoogle Scholar
  9. 9.
    Supalkova V, Beklova M, Baloun J, Singer C, Sures B, Adam V, Huska D, Pikula J, Rauscherova L, Havel L, Zehnalek J, Kizek R (2008) Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry. Bioelectrochemistry 72:59CrossRefGoogle Scholar
  10. 10.
    Zitka O, Stejskal K, Kleckerova A, Adam V, Beklova M, Horna A, Supalkova V, Havel L, Kizek R (2007) Utilizing electrochemical techniques for detection of biological samples. Chem Listy 101:225Google Scholar
  11. 11.
    Diopan V, Shestivska V, Adam V, Macek T, Mackova M, Havel L, Kizek R (2008) Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell Tiss Org 94:291CrossRefGoogle Scholar
  12. 12.
    Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839CrossRefGoogle Scholar
  13. 13.
    Diopan V, Baloun J, Adam V, Macek T, Havel L, Kizek R (2007) Determination of expression of metallothionein at transgenic tobacco plants. Listy Cukrov Reparske 122:325Google Scholar
  14. 14.
    Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O, Stejskal K, Baloun J, Pikula J, Havel L, Zehnalek J, Adam V, Trnkova L, Beklova M, Kizek R (2007) Electroanalysis of plant thiols. Sensors 7:932CrossRefGoogle Scholar
  15. 15.
    Supalkova V, Petrek J, Baloun J, Adam V, Bartusek K, Trnkova L, Beklova M, Diopan V, Havel L, Kizek R (2007) Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(II) and lead(II) ions. Sensors 7:743CrossRefGoogle Scholar
  16. 16.
    Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189CrossRefGoogle Scholar
  17. 17.
    Petrek J, Havel L, Petrlova J, Adam V, Potesil D, Babula P, Kizek R (2007) Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ J Plant Physiol 54:553CrossRefGoogle Scholar
  18. 18.
    Supalkova V, Petrek J, Havel L, Krizkova S, Petrlova J, Adam V, Potesil D, Babula P, Beklova M, Horna A, Kizek R (2006) Electrochemical sensors for detection of acetylsalicylic acid. Sensors 6:1483CrossRefGoogle Scholar
  19. 19.
    Mazarei M, Teplova I, Hajimorad MR, Stewart CN (2008) Pathogen phytosensing: plants to report plant pathogens. Sensors 8:2628CrossRefGoogle Scholar
  20. 20.
    HammondKosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773CrossRefGoogle Scholar
  21. 21.
    Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gutrella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic-acid in plant-disease resistance. Science 266:1247CrossRefGoogle Scholar
  22. 22.
    Diopan V, Babula P, Shestivska V, Adam V, Zemlicka M, Dvorska M, Hubalek J, Trnkova L, Havel L, Kizek R (2008) Electrochemical and spectrometric study of antioxidant activity of pomiferin, isopomiferin, osajin and catalposide. J Pharm Biomed Anal 48:127CrossRefGoogle Scholar
  23. 23.
    Huska D, Baloun J, Krystofova O, Adam V, Zehnalek J, Beklova M, Havel L, Kizek R (2009) Profiling of stress transcriptome of selected genes in plants treated with heavy metals. Toxicol Lett 189:S161CrossRefGoogle Scholar
  24. 24.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239:487CrossRefGoogle Scholar
  25. 25.
    Huska D, Adam V, Trnkova L, Kizek R (2009) The dependence of adenine isolation efficiency on the chain length evidenced using paramagnetic particles and voltammetry measurements. J Magn Magn Mater 321:1474CrossRefGoogle Scholar
  26. 26.
    Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. Int J Mol Sci 10:656CrossRefGoogle Scholar
  27. 27.
    Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J (2009) Preparation and properties of various magnetic nanoparticles. Sensors 9:2352CrossRefGoogle Scholar
  28. 28.
    Palecek E, Billova S, Havran L, Kizek R, Miculkova A, Jelen F (2002) DNA hybridization at microbeads with cathodic stripping voltammetric detection. Talanta 56:919CrossRefGoogle Scholar
  29. 29.
    Masarik M, Cahova K, Kizek R, Palecek E, Fojta M (2007) Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS. Anal Bioanal Chem 388:259CrossRefGoogle Scholar
  30. 30.
    Palecek E, Masarik M, Kizek R, Kuhlmeier D, Hassmann J, Schulein J (2004) Sensitive electrochemical determination of unlabeled MutS protein and detection of point mutations in DNA. Anal Chem 76:5930CrossRefGoogle Scholar
  31. 31.
    Palecek E, Jelen F (2002) Electrochemistry of nucleic acids and development of DNA sensors. Crit Rev Anal Chem 32:261CrossRefGoogle Scholar
  32. 32.
    Fojta M, Havran L, Vojtiskova M, Palecek E (2004) Electrochemical detection of DNA triplet repeat expansion. J Am Chem Soc 126:6532CrossRefGoogle Scholar
  33. 33.
    Palecek E, Fojta M (2007) Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 74:276CrossRefGoogle Scholar
  34. 34.
    Huska D, Hubalek J, Adam V, Vajtr D, Horna A, Trnkova L, Havel L, Kizek R (2009) Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta 79:402CrossRefGoogle Scholar
  35. 35.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473CrossRefGoogle Scholar
  36. 36.
    Durzan DJ, Jokinen K, Guerra MP, Santerre A, Chalupa V, Havel L (1994) Latent diploid parthenogenesis and parthenote cleavage in egg-equivalents of Norway spruce. Int J Plant Sci 155:677CrossRefGoogle Scholar
  37. 37.
    Vonarnold S (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea-abies (L) Karst. J Plant Physiol 128:233Google Scholar
  38. 38.
    Havel L, Durzan DJ (1996) Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. Int J Plant Sci 157:8CrossRefGoogle Scholar
  39. 39.
    Havel L, Durzan DJ (1996) Apoptosis in plants. Bot Acta 109:268Google Scholar
  40. 40.
    Vacek J, Petrek J, Kizek R, Havel L, Klejdus B, Trnkova L, Jelen F (2004) Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry 63:347CrossRefGoogle Scholar
  41. 41.
    Petrlova J, Mikelova R, Stejskal K, Kleckerova A, Zitka O, Petrek J, Havel L, Zehnalek J, Adam V, Trnkova L, Kizek R (2006) Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection. J Sep Sci 29:1166CrossRefGoogle Scholar
  42. 42.
    Vitecek J, Adam V, Petrek J, Vacek J, Kizek R, Havel L (2003) Esterases as a marker for growth of BY-2 tobacco cells and early somatic embryos of the Norway spruce. Plant Cell Tissue Organ Cult 79:195CrossRefGoogle Scholar
  43. 43.
    Adam V, Baloun J, Huska D, Krystofova O, Beklova M, Zehnalek J, Havel L, Kizek R (2008) Investigation of effects of glutathione synthesis inhibition on early somatic embryos treated with cadmium(II) ions. Toxicol Lett 180:S76CrossRefGoogle Scholar
  44. 44.
    Petrek J, Vitecek J, Vlasinova H, Kizek R, Kramer KJ, Adam V, Klejdus B, Havel L (2005) Application of computer imaging, stripping voltammetry and mass spectrometry to study the effect of lead (Pb-EDTA) on the growth and viability of early somatic embryos of Norway spruce (Picea abies/L./Karst.). Anal Bioanal Chem 383:576CrossRefGoogle Scholar
  45. 45.
    Mikelova R, Baloun J, Petrlova J, Adam V, Havel L, Petrek H, Horna A, Kizek R (2007) Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 70:508CrossRefGoogle Scholar
  46. 46.
    Vitecek J, Petrlova J, Petrek J, Adam V, Havel L, Kramer KJ, Kizek R (2007) Application of fluorimetric analysis of plant esterases to study of programmed cell death and effects of cadmium(II) ions. Biol Plant 51:551CrossRefGoogle Scholar
  47. 47.
    Petrek J, Baloun J, Vlasinova H, Havel L, Adam V, Vitecek J, Babula P, Kizek R (2007) Image analysis and activity of intracellular esterases as new analytical tools for determination of growth and viability of embryonic cultures of spruce (Picea sp.) treated with cadmium. Chem Listy 101:569Google Scholar
  48. 48.
    Vitecek J, Adam V, Petrek J, Babula P, Novotna P, Kizek R, Havel L (2005) Application of fluorimetric determination of esterases in plant material. Chem Listy 99:496Google Scholar
  49. 49.
    Vitecek J, Petrlova J, Adam V, Havel L, Kramer KJ, Babula P, Kizek R (2007) A fluorimetric sensor for detection of one living cell. Sensors 7:222CrossRefGoogle Scholar
  50. 50.
    Sippel TO (1978) Histochemistry of thiols and disulfides.2. Methodology of differential staining. Histochem J 10:585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dalibor Huska
    • 1
    • 2
  • Vojtech Adam
    • 1
  • Petr Babula
    • 3
  • Libuse Trnkova
    • 4
  • Jaromir Hubalek
    • 5
  • Josef Zehnalek
    • 1
  • Ladislav Havel
    • 2
  • Rene Kizek
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryMendel UniversityBrnoCzech Republic
  2. 2.Department of Plant BiologyMendel UniversityBrnoCzech Republic
  3. 3.Department of Natural Drugs, Faculty of PharmacyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  4. 4.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  5. 5.Department of Microelectronics, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations