Advertisement

Microchimica Acta

, Volume 172, Issue 3–4, pp 327–333 | Cite as

Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values

  • Feng GaoEmail author
  • Xiaoxiao Chen
  • Qingqing Ye
  • Zhen Yao
  • Xinyin Guo
  • Lun Wang
Original Paper

Abstract

pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5.5 to 9.0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode.

Figure

Single-nanoparticle laboratories: core-shell silica fluorescent nanoparticles for pH sensing

Keywords

Water-in-oil microemulsion Fluorescent core-shell silica nanoparticles pH sensing Single-particle laboratories 

Notes

Acknowledgements

F. Gao is grateful for the financial support from the Natural Science Foundation of China (Grant No. 20705001, 21055001), the Key Project of Educational Committee of Anhui Province (Grant No.KJ2007A008), and Starting Foundation for PhD of Anhui Normal University.

References

  1. 1.
    Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709CrossRefGoogle Scholar
  2. 2.
    Peterson JI, Goldstein SR, Fitzgerald RV, Buckhold DK (1980) Fiber optic pH probe for physiological use. Anal Chem 152:864CrossRefGoogle Scholar
  3. 3.
    Lee M, Niko G, Gubernator NG, Sulzer D, Sames D (2010) Development of pH-responsive fluorescent false neurotransmitters. J Am Chem Soc 132:8828CrossRefGoogle Scholar
  4. 4.
    Doussineau T, Smaïhi M, Mohr GJ (2009) Two-dye core/shell zeolite nanoparticles: a new tool for ratiometric pH measurements. Adv Funct Mater 19:117CrossRefGoogle Scholar
  5. 5.
    Ji J, Rosenzweig N, Griffin C, Rosenzweig Z (2000) Synthesis and application of submicrometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages. Anal Chem 72:3497CrossRefGoogle Scholar
  6. 6.
    Zhu Q, Aller RC, Fan Y (2005) High-performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water. Environ Sci Technol 39:8906CrossRefGoogle Scholar
  7. 7.
    Gao F, Wang L, Tang LJ, Zhu CQ (2005) A novel nano-sensor based on rhodamine-β-isothiocyanate-doped silica nanoparticles for pH measurement. Microchim Acta 152:131CrossRefGoogle Scholar
  8. 8.
    Gao F, Tang LJ, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta A 67:517CrossRefGoogle Scholar
  9. 9.
    Yimit A, Itoh K, Murabayashi M (2003) Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens Actuators B: Chem 88:239CrossRefGoogle Scholar
  10. 10.
    Gao F, Tang LJ, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta A 67:517CrossRefGoogle Scholar
  11. 11.
    Taira T, Paalasmaa P, Voipio J, Kaila K (1995) Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. J Neurophysiol 74:643Google Scholar
  12. 12.
    Kang EH, Shim JM, Kang HJ, Park SW, Lee JW, Lee JK (2006) Modification of mesostructure base on composition of silica materials and their applications to pH sensing. Poly Adv Technol 17:845CrossRefGoogle Scholar
  13. 13.
    Jin Z, Su Y, Duan Y (2000) An improved optical pH sensor based on polyaniline. Sens Actuators B: Chem 71:118CrossRefGoogle Scholar
  14. 14.
    Pringsheim E, Terpetschnig E, Wolfbeis OS (1997) Optical sensing of pH using thin films of substituted polyanilines. Anal Chim Acta 357:247CrossRefGoogle Scholar
  15. 15.
    Ruan C, Ong KG, Mungle C, Paulose M, Nickl NJ, Grimes CA (2003) A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sens Actuators B: Chem 96:61CrossRefGoogle Scholar
  16. 16.
    Peng H, Stolwijk JA, Sun LN, Wegener J, Wolfbeis OS (2010) A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew Chem Int Ed 49:4246CrossRefGoogle Scholar
  17. 17.
    Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/shell fluorescent nanoparticles for chemical sensing: towards single-particle laboratories. Small 2:723CrossRefGoogle Scholar
  18. 18.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkGoogle Scholar
  19. 19.
    Buck SM, Koo YL, Park E, Xu H, Philbert MA, Brasuel MA, Kopelman R (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540CrossRefGoogle Scholar
  20. 20.
    Ma A, Rosenzweig Z (2005) Synthesis and analytical properties of micrometric biosensing lipobeads. Anal Bioanal Chem 382:28CrossRefGoogle Scholar
  21. 21.
    Hilliard LR, Zhao XJ, Tan WH (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51CrossRefGoogle Scholar
  22. 22.
    Qhobosheane M, Santra S, Zhang P, Tan WH (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274CrossRefGoogle Scholar
  23. 23.
    Ye ZQ, Tan MQ, Wang GL, Yuan JL (2004) Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Anal Chem 76:513CrossRefGoogle Scholar
  24. 24.
    Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988CrossRefGoogle Scholar
  25. 25.
    Zhao XJ, Tapec-dytioco R, Tan WH (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474CrossRefGoogle Scholar
  26. 26.
    He XX, Duan JH, Wang KM, Tan WH, Lin X, He CM (2004) A novel fluorescent label based on orgainic dye-doped silica nanoparticles for hepgliver cancer cell recognition. J Nanosci Nanotech 4:585CrossRefGoogle Scholar
  27. 27.
    Gao F, Luo FB, Yin J, Wang L (2008) Preparation of aminated core-shell fluorescent nanoparticles and their application to the synchronous fluorescence determination of γ-globulin. Luminescence 23:392CrossRefGoogle Scholar
  28. 28.
    Lian W, Litherland SA, Badrane H, Tan WH, Wu DH, Baker HV, Guling PA, Lim DV, Jin SG (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135CrossRefGoogle Scholar
  29. 29.
    Luo FB, Yin J, Gao F, Wang L (2009) A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy. Microchim Acta 165:23CrossRefGoogle Scholar
  30. 30.
    Gao F, Luo F, Chen XX, Yao W, Yin J, Yao Z, Wang L (2009) A novel nonenzymatic fluorescent sensor for glucose based on silica nanoparticles doped with europium coordination compound. Talanta 80:202CrossRefGoogle Scholar
  31. 31.
    Wang L, Wang KM, Santra S, Zhao XJ, Hilliard LR, Smith JE, Wu Y, Tan WH (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646CrossRefGoogle Scholar
  32. 32.
    Yang YH, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354CrossRefGoogle Scholar
  33. 33.
    Yan JL, Estevez M, Smithl JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44CrossRefGoogle Scholar
  34. 34.
    Tan WH, Wang KM, He XX, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621CrossRefGoogle Scholar
  35. 35.
    Larson DR (2004) Optical approaches to the study of nanoparticles and biology:quantum dots, silica dots and retroviruses. Cornell University, IthacaGoogle Scholar
  36. 36.
    Wolfbeis OS, Fuerlinger E, Kroneis H, Marsoner H (1983) A study on fluorescent indicators for measuring near-neutral (physiological) ph values. Fresenius’ Z Anal Chem 314:319CrossRefGoogle Scholar
  37. 37.
    Weigl BH, Holobar A, Trettnak W, Klimant I, Kraus H, O’Leary P, Wolfbeis OS (1994) Optical triple sensor for measuring pH, oxygen and carbon dioxide. J Biotechnol 32:127CrossRefGoogle Scholar
  38. 38.
    Holobar A, Weigl BH, Trettnak W, Bene R, Lehmann H, Nena V, Rodriguez NV, Wollschlager A, O’Leary P, Raspor P, Wolfbeis OS (1993) Experimental results on an optical pH measurement system for bioreactors. Sens Actuators B: Chem 11:425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Feng Gao
    • 1
    Email author
  • Xiaoxiao Chen
    • 1
  • Qingqing Ye
    • 1
  • Zhen Yao
    • 1
  • Xinyin Guo
    • 1
  • Lun Wang
    • 1
  1. 1.Anhui Key Laboratory of Chemo/Biosensing, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuChina

Personalised recommendations