Advertisement

Microchimica Acta

, Volume 172, Issue 3–4, pp 299–308 | Cite as

Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors

  • Günter MistlbergerEmail author
  • Antonio L. Medina-Castillo
  • Sergey M. Borisov
  • Torsten Mayr
  • Alberto Fernández-Gutiérrez
  • Jorge F. Fernandez-Sanchez
  • Ingo Klimant
Original Paper

Abstract

Magnetic optical sensor particles were prepared using a mini-emulsion solvent evaporation (MESE) technique. The resulting nanoparticles (NPs) have diameters around 100 nm and relatively narrow size distribution (PDI < 0.2). Incorporation of probes for oxygen or pH resulted in magnetic sensor particles for bioprocess monitoring and imaging applications. The MESE technique yields sensing NPs in higher quantities than obtained by a previously reported nanoprecipitation method, and the size of the NPs is smaller than that of particles made by spray-drying of sensor cocktails. Moreover, the technique is flexible in terms of polymers, solvents and indicators used in that it may be applied—at least in principle—to numerous combinations of two-phase systems.

Keywords

Magnetic optical sensor particles Oxygen sensor pH sensor Light harvesting Miniemulsion solvent evaporation Nanosensor 

Notes

Acknowledgements

This work was supported by Österreichischer Austauschdienst, ÖAD (program Acciones Integradas) under the project number ES 13/2007. Further financial support was received from the Spanish Ministry of Education (FPU grant reference AP2006-01144) and the Regional Government of Andalusia (Excellence projects P07-FQM-02738 and P07-FQM-02625). We also thank Dr. Armin Zankel and Dr. Angelika Reichmann from the Institute for Electron Microscopy, Graz University of Technology, for the SEM measurements.

References

  1. 1.
    Narayanaswamy R, Wolfbeis OS (2004) Optical sensors: industrial, environmental and diagnostic applications, 1st edn. SpringerGoogle Scholar
  2. 2.
    Aylott JW (2003) Optical nanosensors-an enabling technology for intracellular measurements. Analyst 128:309–312CrossRefGoogle Scholar
  3. 3.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461CrossRefGoogle Scholar
  4. 4.
    Koo YEL, Cao Y, Kopelman R, Koo S, Brasuel M, Philbert M (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498–2505CrossRefGoogle Scholar
  5. 5.
    O’Mahony FC, O’Donovan C, Hynes J, Moore T, Davenport J, Papkovsky DB (2005) Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies. Environ Sci Technol 39:5010–5014CrossRefGoogle Scholar
  6. 6.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73:4124–4133CrossRefGoogle Scholar
  7. 7.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422CrossRefGoogle Scholar
  8. 8.
    Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836CrossRefGoogle Scholar
  9. 9.
    Clark HA, Kopelman R, Tjalkens R, Philbert MA (1999) Optical nanosensors for chemical analysis inside single living cells. 2. sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 71:4837–4843CrossRefGoogle Scholar
  10. 10.
    Koo YEL, Cao Y, Kopelman R, Koo SM, Brasuel M, Philbert MA (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498–2505CrossRefGoogle Scholar
  11. 11.
    Koo YEL, Smith R, Kopelman R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Curr Appl Phys 9:S15–S18CrossRefGoogle Scholar
  12. 12.
    Borisov S, Mayr T, Klimant I (2008) Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573–582CrossRefGoogle Scholar
  13. 13.
    Borisov SM, Klimant I (2008) Optical nanosensors–smart tools in bioanalytics. Analyst 133:1302–1307CrossRefGoogle Scholar
  14. 14.
    Cao Y, Koo YEL, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129:745–750CrossRefGoogle Scholar
  15. 15.
    Cywinski PJ, Moro AJ, Stanca SE, Biskup C, Mohr GJ (2009) Ratiometric porphyrin-based layers and nanoparticles for measuring oxygen in biosamples. Sens Actuators B 135:472–477CrossRefGoogle Scholar
  16. 16.
    Doussineau T, Smaihi M, Mohr GJ (2009) Two-dye core/shell zeolite nanoparticles: A new tool for ratiometric pH measurements. Adv Funct Mater 19:117–122CrossRefGoogle Scholar
  17. 17.
    Waich K, Mayr T, Klimant I (2008) Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta 77:66–72CrossRefGoogle Scholar
  18. 18.
    Wygladacz K, Qin Y, Wroblewski W, Bakker E (2008) Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal Chim Acta 614:77–84CrossRefGoogle Scholar
  19. 19.
    Xu C, Wygladacz K, Retter R, Bell M, Bakker E (2007) Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres. Anal Chem 79:9505–9512CrossRefGoogle Scholar
  20. 20.
    Zenkl G, Mayr T, Klimant I (2008) Sugar-responsive fluorescent nanospheres. Macromol Biosci 8:146–152CrossRefGoogle Scholar
  21. 21.
    Anker JN, Koo YE, Kopelman R (2007) Magnetically controlled sensor swarms. Sens Actuators B 121:83–92CrossRefGoogle Scholar
  22. 22.
    Chojnacki P, Mistlberger G, Klimant I (2007) Separable magnetic sensors for the optical determination of oxygen. Angew Chem Int Ed Engl 46:8850–8853CrossRefGoogle Scholar
  23. 23.
    Mistlberger G, Chojnacki P, Klimant I (2008) Magnetic sensor particles: an optimized magnetic separator with an optical window. J Phys D: Appl Phys 41:085003 (9pp)CrossRefGoogle Scholar
  24. 24.
    Mistlberger G, Borisov SM, Klimant I (2009) Enhancing performance in optical sensing with magnetic nanoparticles. Sens Actuators B 139:174–180CrossRefGoogle Scholar
  25. 25.
    Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 79:1322–1330CrossRefGoogle Scholar
  26. 26.
    Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Multi-functional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as basis for nanotherapeutics. Adv Funct Mater 20:1842–1851CrossRefGoogle Scholar
  27. 27.
    Koren K, Mistlberger G, Aigner D, Borisov S, Zankel A, Pölt P, Klimant I (2010) Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying. Monatsh Chem 141:691–697CrossRefGoogle Scholar
  28. 28.
    Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212CrossRefGoogle Scholar
  29. 29.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483CrossRefGoogle Scholar
  30. 30.
    Borisov S, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509CrossRefGoogle Scholar
  31. 31.
    Weidgans BM, Krause C, Klimant I, Wolfbeis OS (2004) Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst 129:645–650CrossRefGoogle Scholar
  32. 32.
    Ramírez L, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204:22–31CrossRefGoogle Scholar
  33. 33.
    Medina-Castillo AL, Mistlberger G, Fernandez-Sanchez JF, Segura-Carretero A, Klimant I, Fernandez-Gutierrez A (2010) Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules 43:55–61CrossRefGoogle Scholar
  34. 34.
    Medina-Castillo AL, Fernandez-Sanchez JF, Segura-Carretero A, Fernandez-Gutierrez A (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between Flory’s parameter and particle size. Macromolecules 43:5804–5813CrossRefGoogle Scholar
  35. 35.
    Carraway ER, Demas JN, DeGraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337–342CrossRefGoogle Scholar
  36. 36.
    Klimant I, Ruckruh F, Liebsch G, Stangelmayer A, Wolfbeis O (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses. Microchim Acta 131:35–46CrossRefGoogle Scholar
  37. 37.
    Borisov S, Nuss G, Haas W, Saf R, Schmuck M, Klimant I (2009) New nir-emitting complexes of platinum(II) and palladium(II) with fluorinated benzoporphyrins. J Photochem Photobiol A 201:128–135CrossRefGoogle Scholar
  38. 38.
    Mayr T, Borisov SM, Abel T, Enko B, Waich K, Mistlberger G, Klimant I (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81:6541–6545CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Günter Mistlberger
    • 1
    Email author
  • Antonio L. Medina-Castillo
    • 2
  • Sergey M. Borisov
    • 1
  • Torsten Mayr
    • 1
  • Alberto Fernández-Gutiérrez
    • 2
  • Jorge F. Fernandez-Sanchez
    • 2
  • Ingo Klimant
    • 1
  1. 1.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria
  2. 2.Department of Analytical ChemistryUniversity of GranadaGranadaSpain

Personalised recommendations