Microchimica Acta

, Volume 172, Issue 1–2, pp 185–191 | Cite as

The effect of colloidal solutions of gold nanoparticles on the performance of a glucose oxidase modified carbon electrode

Original Paper

Abstract

The aim of this work was to further evaluate the effect of colloidal solutions of gold nanoparticles (Au-NPs) on the performance of a carbon rod electrode modified with glucose oxidase. The amperometric response of the system at +0.3 V vs. Ag/AgCl was studied in the absence and in the presence of Au-NPs (6 nm and 13 nm in diameter) and in presence of N-methylphenazonium methyl sulfate (PMS) at pH 6.0. This study shows that the application of <0.60 nmol L−1 concentrations of Au-NPs increases the rate of mediated electron transfer, and this effect does not depend on the diameter of Au-NPs. The analytical signal in the presence 0.60 nmol L−1 of Au-NPs (13 nm) and 2 mmol L−1 of PMS linearly depends on the concentration of glucose in the range from 0.1 to 10 mmol L−1, the limit of detection is as low as 0.05 mmol L−1.

Keywords

Carbon rod electrode Electron transfer Gold nanoparticles Glucose oxidase Amperometry Mediator Biosensor 

References

  1. 1.
    Ramanavicius A, Ramanaviciene A (2009) Hemoproteins in design of biofuel cells. (Review). Fuel Cells 1:25CrossRefGoogle Scholar
  2. 2.
    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421CrossRefGoogle Scholar
  3. 3.
    Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuators B 123:1195CrossRefGoogle Scholar
  4. 4.
    Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8:2043CrossRefGoogle Scholar
  5. 5.
    Gun J, Rizkov D, Lev O, Abouzar MH, Poghossian A, Schöning MJ (2009) Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchim Acta 164:395CrossRefGoogle Scholar
  6. 6.
    Bakker E, Qin Y (2006) Electrochemical sensors. Anal Chem 78:3965CrossRefGoogle Scholar
  7. 7.
    Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319CrossRefGoogle Scholar
  8. 8.
    Ramanaviciene A, Nastajute G, Snitka V, Kausaite A, German N, Barauskas-Memenas D, Ramanavicius A (2009) Spectrophotometric evaluation of gold nanoparticles as red-ox mediator for glucose oxidase. Sens Actuators B 137:483CrossRefGoogle Scholar
  9. 9.
    Lu Y, Yuan R, Chai Y, Hong Ch, Liu K, Guan Sh (2009) Ultrasensitive amperometric immunosensor for the determination of carcinoembryonic antigen based on a porous chitosan and gold nanoparticles functionalized interface. Microchim Acta 167:217CrossRefGoogle Scholar
  10. 10.
    Kim G-Y, Shim J, Kang M-S, Moon S-H (2008) Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. J Hazard Mater 156:141CrossRefGoogle Scholar
  11. 11.
    Freire RS, Pessoa CA, Mello LD, Kubota LT (2003) Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J Braz Chem Soc 14:230CrossRefGoogle Scholar
  12. 12.
    Onda M, Lvov Y, Ariga K, Kunitake T (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51:163CrossRefGoogle Scholar
  13. 13.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 24:761CrossRefGoogle Scholar
  14. 14.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2006) Potentiometric study of quinohemoprotein alcohol dehydrogenase immobilized on the carbon rod electrode. Sens Actuators B Chem 113:435CrossRefGoogle Scholar
  15. 15.
    Lapenaite I, Ramanaviciene A, Ramanavicius A (2006) Current trends in enzymatic determination of glycerol. Crit Rev Anal Chem 36:13CrossRefGoogle Scholar
  16. 16.
    Ramanaviciene A, Ramanavicius A (2004) Affinity sensors based on nano-structured p-p conjugated polymer polypyrrole. In: Thomas DW (ed) Advanced biomaterials for medical applications. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  17. 17.
    Hoshi T, Sagae N, Daikuhara K, Takahara K, Anzai J (2007) Multilayer membranes via layer-by-layer deposition of glucose oxidase and Au nanoparticles on a Pt electrode for glucose sensing. Mater Sci Eng C 27:890CrossRefGoogle Scholar
  18. 18.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Self-encapsulation of oxidases as a basic approach to tune upper detection limit of amperometric biosensors. Analyst 133:1083CrossRefGoogle Scholar
  19. 19.
    Ramanavicius A, Kausaite A, Ramanaviciene A, Acaite J, Malinauskas A (2006) Redox enzyme—glucose oxidase—initiated synthesis of polypyrrole. Synth Met 156:409CrossRefGoogle Scholar
  20. 20.
    Ramanaviciene A, Schuhmann W, Ramanavicius A (2006) AFM study of conducting polymer polypyrrole nanoparticles formed by redox enzyme—glucose oxidase—initiated polymerisation. Colloids Surf B Biointerfaces 48:159CrossRefGoogle Scholar
  21. 21.
    Ma Zh, Ding T (2009) Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 4:1236CrossRefGoogle Scholar
  22. 22.
    Yáñez-Sedeño P, Pingarrón JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884CrossRefGoogle Scholar
  23. 23.
    Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochem 67:15CrossRefGoogle Scholar
  24. 24.
    Li D, He Q, Cui Y, Duan L, Li J (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488CrossRefGoogle Scholar
  25. 25.
    Zhao S, Zhang K, Bai Y, Yang W, Sun C (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69:158CrossRefGoogle Scholar
  26. 26.
    Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19:177CrossRefGoogle Scholar
  27. 27.
    Yang W, Wang J, Zhao S, Sun Y, Sun C (2006) Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem Commun 8:665CrossRefGoogle Scholar
  28. 28.
    Zhao J, O’Daly JP, Henkens RW, Stonehuerner J, Crumbliss AL (1996) A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 11:493CrossRefGoogle Scholar
  29. 29.
    Yeh JI, Zimmt MB, Zimmerman AL (2005) Nanowiring of a redox enzyme by metallized peptides. Biosens Bioelectron 21:973CrossRefGoogle Scholar
  30. 30.
    Thibault S, Aubriet H, Arnoult Ch, Ruch D (2008) Gold nanoparticles and a glucose oxidase based biosensor an attempt to follow-up aging by XPS. Microchim Acta 63:211CrossRefGoogle Scholar
  31. 31.
    Willner I, Willner B, Katz E (2007) Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2CrossRefGoogle Scholar
  32. 32.
    Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181CrossRefGoogle Scholar
  33. 33.
    Shi W, Sahoo Y, Swihart MT (2004) Gold nanoparticles surface-terminated with bifunctional ligands. Colloids Surf A Physicochem Eng Asp 246:109CrossRefGoogle Scholar
  34. 34.
    Ramanavicius A (2007) Amperometric biosensor for the determination of creatine. Anal Bioanal Chem 387:1899CrossRefGoogle Scholar
  35. 35.
    Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cyto-chemistry. Eur J Cell Biol 38:87Google Scholar
  36. 36.
    Technical data sheet 787 (2009) Polysciences, IncGoogle Scholar
  37. 37.
    Neiman B, Grushka E, Lev O (2001) Use of gold nanoparticles to enhance capillary electrophoresis. Anal Chem 73:5220CrossRefGoogle Scholar
  38. 38.
    Wang Y, Wei W, Liu X, Zeng X (2009) Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 29:50CrossRefGoogle Scholar
  39. 39.
    Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142CrossRefGoogle Scholar
  40. 40.
    German N, Ramanaviciene A, Voronovic J, Ramanavicius A (2010) Glucose biosensor based on graphite electrodes modified by glucose oxidase and colloidal gold nanoparticles. Microchim Acta 168:221CrossRefGoogle Scholar
  41. 41.
    Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119:380CrossRefGoogle Scholar
  42. 42.
    Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877CrossRefGoogle Scholar
  43. 43.
    Du Y, Luo XL, Xu JJ, Chen HY (2007) A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 70:342CrossRefGoogle Scholar
  44. 44.
    Wang J, Wang L, Di J, Tu Y (2008) Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sens Actuators B 135:283CrossRefGoogle Scholar
  45. 45.
    Chu X, Duan DX, Shen GL, Yu RQ (2007) Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 71:2040CrossRefGoogle Scholar
  46. 46.
    Mena ML, Yáñez-Sedeño P, Pingarrón JM (2005) A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Anal Biochem 336:20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Natalija German
    • 1
    • 2
  • Arunas Ramanavicius
    • 2
  • Jaroslav Voronovic
    • 1
    • 2
  • Yasemin Oztekin
    • 2
    • 3
  • Almira Ramanaviciene
    • 1
    • 2
  1. 1.Division of ImmunotechnologyState Research Institute Center for Innovative MedicineVilniusLithuania
  2. 2.Center of Nanotechnology and Materials Science – NanoTechnas, Faculty of ChemistryVilnius UniversityVilniusLithuania
  3. 3.Faculty of Science, Department of ChemistrySelcuk UniversityKonyaTurkey

Personalised recommendations