Microchimica Acta

, Volume 172, Issue 1–2, pp 3–14 | Cite as

Microwave assisted extraction for mercury speciation analysis

  • Laura Hinojosa Reyes
  • Jorge Luis Guzmán Mar
  • Aracely Hernández-Ramírez
  • Juan Manuel Peralta-Hernández
  • Juan Manuel Alfaro Barbosa
  • H. M. Skip Kingston
Review Article


The application of microwave-assisted extraction (MAE) to the work-up of environmental and biological samples in the study of mercury speciation analysis has increased in recent years and is now increasingly accepted as a standard approach. The review provides a brief theoretical background of microwave heating and the basic principles of microwave energy used for extraction. The advantages and disadvantages of (a) MAE techniques, (b) the influence of the main parameters affecting the extraction, (c) statistical optimization approaches, and (d) strategies for method validation also are highlighted. Recent applications of MAE to mercury species analyses in biological samples, soils, sediments, and crude oil samples are surveyed and critically reviewed. In addition, comparisons of its use with other well-established extraction procedures are discussed.


Microwave-assisted extraction has become a very useful sample preparation techniques in the study of mercury speciation in environmental and biological samples


Microwave-assisted extraction (MAE) Sample preparation Speciation analysis Mercury Mercury species Method validation 


  1. 1.
    Morita M, Yoshinaga J, Edmonds JS (1998) The determination of mercury species in environmental and biological samples (Technical report). Pure Appl Chem 70:1585–1615CrossRefGoogle Scholar
  2. 2.
    Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Mercury in environmental samples: speciation, artifacts and validation. TrAC Trends Anal Chem 24:383–393CrossRefGoogle Scholar
  3. 3.
    Gochfeld M (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 56:174–179CrossRefGoogle Scholar
  4. 4.
    Levenson CW, Axelrad DM (2006) Too much of a good thing? Update on fish consumption and mercury exposure. Nutr Rev 64:139–145CrossRefGoogle Scholar
  5. 5.
    Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, Van Leeuwen HP, Lobinski R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem 72:1453–1470CrossRefGoogle Scholar
  6. 6.
    Stoichev T, Amouroux D, Martin-Doimeadios RCR, Monperrus M, Donard OFX, Tsalev DL (2006) Speciation analysis of mercury in aquatic environment. Appl Spectrosc Rev 41:591–619CrossRefGoogle Scholar
  7. 7.
    Wrobel K, Kannamkumarath S, Wrobel K, Caruso JA (2003) Environmentally friendly sample treatment for speciation analysis by hyphenated techniques. Green Chem 5:250–259CrossRefGoogle Scholar
  8. 8.
    Camel V (2001) Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126:1182–1193CrossRefGoogle Scholar
  9. 9.
    Buldini PL, Ricci L, Sharma JL (2002) Recent applications of sample preparation techniques in food analysis. J Chromatogr A 975:47–70CrossRefGoogle Scholar
  10. 10.
    Nobrega JA, Trevizan LC, Araujo GCL, Nogueira ARA (2002) Focused-microwave-assisted strategies for sample preparation. Spectrochim Acta B 57:1855–1876CrossRefGoogle Scholar
  11. 11.
    Srogi K (2006) A review: application of microwave techniques for environmental analytical chemistry. Anal Lett 39:1261–1288CrossRefGoogle Scholar
  12. 12.
    Eskilsson CS, Bjorklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250CrossRefGoogle Scholar
  13. 13.
    Kingston HM, Jassie LB (1998) Introduction to microwave sample preparation. American Chemical Society, Washington, DCGoogle Scholar
  14. 14.
    Gerbersmann C, Heisterkamp M, Adams FC, Broekaert JAC (1997) Two methods for the speciation analysis of mercury in fish involving microwave-assisted digestion and gas chromatography atomic emission spectrometry. Anal Chim Acta 350:273–285CrossRefGoogle Scholar
  15. 15.
    Tseng CM, deDiego A, Martin FM, Donard OFX (1997) Rapid and quantitative microwave-assisted recovery of methylmercury from standard reference sediments. J Anal At Spectrom 12:629–635CrossRefGoogle Scholar
  16. 16.
    Vazquez MJ, Carro AM, Lorenzo RA, Cela R (1997) Optimization of methylmercury microwave-assisted extraction from aquatic sediments. Anal Chem 69:221–225CrossRefGoogle Scholar
  17. 17.
    Rahman GMM, Kingston HM (2004) Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments. Anal Chem 76:3548–3555CrossRefGoogle Scholar
  18. 18.
    Rahman GMM, Kingston HM (2005) Development of a microwave-assisted extraction method and isotopic validation of mercury species in soils and sediments. J Anal At Spectrom 20:183–191CrossRefGoogle Scholar
  19. 19.
    Kubrakova IV, Toropchenova ES (2008) Microwave heating for enhancing efficiency of analytical operations (Review). Inorg Mater 44:1509–1519CrossRefGoogle Scholar
  20. 20.
    Link DD, HM✠K, Havrilla GJ, Colletti LP (2002) Development of microwave-assisted drying methods for sample preparation for dried spot micro-X-ray fluorescence analysis. Anal Chem 74:1165–1170CrossRefGoogle Scholar
  21. 21.
    Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 1:7–18Google Scholar
  22. 22.
    de Oliveira E (2003) Sample preparation for atomic spectroscopy: evolution and future trends. J Braz Chem Soc 14:174–182Google Scholar
  23. 23.
    Pacheco-Arjona J, Rodriguez-Gonzalez P, Valiente M, Barclay D, Donard OFX (2008) Application of a new focused microwave technology with species-specific isotope dilution analysis for the quantitative extraction of organometallic contaminants in solid environmental matrices. Int J Environ Anal Chem 88:923–932CrossRefGoogle Scholar
  24. 24.
    Castillo A, Rodriguez-Gonzalez P, Centineo G, Roig-Navarro AF, Alonso JIG (2010) Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in Fish Tissues. Anal Chem 82:2773–2783CrossRefGoogle Scholar
  25. 25.
    Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46CrossRefGoogle Scholar
  26. 26.
    Abranko L, Kmellar B, Fodor P (2007) Comparison of extraction procedures for methylmercury determination by a SPME-GC-AFS system. Microchem J 85:122–126CrossRefGoogle Scholar
  27. 27.
    Rahman GMM, Fahrenholz T, Kingston HM (2009) Application of speciated isotope dilution mass spectrometry to evaluate methods for efficiencies, recoveries, and quantification of mercury species transformations in human hair. J Anal At Spectrom 24:83–92CrossRefGoogle Scholar
  28. 28.
    Reyes LH, Rahman GMM, Fahrenholz T, Kingston HMS (2008) Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish. Anal Bioanal Chem 390:2123–2132CrossRefGoogle Scholar
  29. 29.
    Gao EL, Jiang GB, He B, Yin YG, Shi JB (2008) Speciation of mercury in coal using HPLC-CV-AFS system: comparison of different extraction methods. J Anal At Spectrom 23:1397–1400CrossRefGoogle Scholar
  30. 30.
    Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2001) Microwave treatment of biological samples for methylmercury determination by high performance liquid chromatography-cold vapour atomic fluorescence spectrometry. Analyst 126:1583–1587CrossRefGoogle Scholar
  31. 31.
    Rahman GMM, Fahrenholz T, Kingston HMS, Pamuku M, Hwang JD, Lyman AY (2010) Speciation of mercury in crude oil using speciated isotope dilution mass spectrometry. Spectrosc 25:37–45Google Scholar
  32. 32.
    Landaluze JS, de Diego A, Raposo JC, Madariaga JM (2004) Methylmercury determination in sediments and fish tissues from the Nerbioi-lbaizabal estuary (Basque Country, Spain). Anal Chim Acta 508:107–117CrossRefGoogle Scholar
  33. 33.
    Hintelmann H (1999) Comparison of different extraction techniques used for methylmercury analysis with respect to accidental formation of methylmercury during sample preparation. Chemosphere 39:1093–1105CrossRefGoogle Scholar
  34. 34.
    Abuin M, Carro AM, Lorenzo RA (2000) Experimental design of a microwave-assisted extraction-derivatization method for the analysis of methylmercury. J Chromatogr A 889:185–193CrossRefGoogle Scholar
  35. 35.
    Vazquez MJ, Abuin M, Carro AM, Lorenzo RA, Cela R (1999) Experimental design approach for the extraction of methylmercury from certified reference materials using microwave energy. Chemosphere 39:1211–1224CrossRefGoogle Scholar
  36. 36.
    Point D, Davis WC, Alonso JIG, Monperrus M, Christopher SJ, Donard OFX, Becker PR, Wise SA (2007) Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials. Anal Bioanal Chem 389:787–798CrossRefGoogle Scholar
  37. 37.
    Reyes LH, Rahman GMM, Kingston HMS (2009) Robust microwave-assisted extraction protocol for determination of total mercury and methylmercury in fish tissues. Anal Chim Acta 631:121–128CrossRefGoogle Scholar
  38. 38.
    Martin-Doimeadios RCR, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Using speciated isotope dilution with GC-inductively coupled plasma MS to determine and unravel the artificial formation of monomethylmercury in certified reference sediments. Anal Chem 75:3202–3211CrossRefGoogle Scholar
  39. 39.
    Monperrus M, Martin-Doimeadios RCR, Scancar J, Amouroux D, Donard OFX (2003) Simultaneous sample preparation and species-specific isotope dilution mass spectrometry analysis of monomethylmercury and tributyltin in a certified oyster tissue. Anal Chem 75:4095–4102CrossRefGoogle Scholar
  40. 40.
    Moreno MJ, Pacheco-Arjona J, Rodriguez-Gonzalez P, Preud’Homme H, Amouroux D, Donard OFX (2006) Simultaneous determination of monomethylmercury, monobutyltin, dibutyltin and tributyltin in environmental samples by multi-elemental-species-specific isotope dilution analysis using electron ionisation GC-MS. J Mass Spectrom 41:1491–1497CrossRefGoogle Scholar
  41. 41.
    Rodriguez Martin-Doimeadios RC, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Using speciated isotope dilution with GC-inductively coupled plasma MS to determine and unravel the artificial formation of monomethylmercury in certified reference sediments. Anal Chem 75:3202–3211CrossRefGoogle Scholar
  42. 42.
    Heumann KG (2004) Isotope-dilution ICP-MS for trace element determination and speciation: from a reference method to a routine method? Anal Bioanal Chem 378:318–329CrossRefGoogle Scholar
  43. 43.
    Rodriguez-Gonzalez P, Alonso JIG (2010) Recent advances in isotope dilution analysis for elemental speciation. J Anal At Spectrom 25:239–259CrossRefGoogle Scholar
  44. 44.
    Lorenzo RA, Vazquez MJ, Carro AM, Cela R (1999) Methylmercury extraction from aquatic sediments—a comparison between manual, supercritical fluid and microwave-assisted techniques. TrAC Trends Anal Chem 18:410–416CrossRefGoogle Scholar
  45. 45.
    Niessen S, Mikac N, Fischer JC (1999) Microwave-assisted determination of total mercury and methylmercury in sediment and porewater. Analusis 27:871–875CrossRefGoogle Scholar
  46. 46.
    US EPA Draft Method 3200 (2005) Mercury species fractionation and quantification by microwave assisted extraction, selective solvent extraction and/or solid phase extraction. Office UGP, Washington DCGoogle Scholar
  47. 47.
    Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2008) Determination of monomethylmercury in low- and high-polluted sediments by microwave extraction and gas chromatography with atomic fluorescence detection. Anal Chim Acta 608:30–37Google Scholar
  48. 48.
    Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2001) Microwave-assisted extraction for methylmercury determination in sediments by high performance liquid chromatography-cold vapour-atomic fluorescence spectrometry. J Anal At Spectrom 16:643–647CrossRefGoogle Scholar
  49. 49.
    Pereiro IR, Wasik A, Lobinski R (1998) Determination of mercury species in fish reference materials by isothermal multicapillary gas chromatography with atomic emission detection after microwave-assisted solubilization and solvent extraction. J Anal At Spectrom 13:743–747CrossRefGoogle Scholar
  50. 50.
    Tseng CM, DeDiego A, Martin FM, Amouroux D, Donard OFX (1997) Rapid determination of inorganic mercury and methylmercury in biological reference materials by hydride generation, cryofocusing, atomic absorption spectrometry after open focused microwave-assisted alkaline digestion. J Anal At Spectrom 12:743–750CrossRefGoogle Scholar
  51. 51.
    Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2005) Determination of mercury species in fish reference materials by gas chromatography-atomic fluorescence detection after closed-vessel microwave-assisted extraction. J Chromatogr A 1093:21–28CrossRefGoogle Scholar
  52. 52.
    Tutschku S, Schantz MM, Wise SA (2002) Determination of methylmercury and butyltin compounds in marine biota and sediments using microwave-assisted acid extraction, solid-phase microextraction, and gas chromatography with microwave-induced plasma atomic emission spectrometric detection. Anal Chem 74:4694–4701CrossRefGoogle Scholar
  53. 53.
    Rodil R, Carro AM, Lorenzo RA, Abuin M, Cela R (2002) Methylmercury determination in biological samples by derivatization, solid-phase microextraction and gas chromatography with microwave-induced plasma atomic emission spectrometry. J Chromatogr A 963:313–323CrossRefGoogle Scholar
  54. 54.
    Davis WC, Vander Pol SS, Schantz MM, Long SE, Day RD, Christopher SJ (2004) An accurate and sensitive method for the determination of methylmercury in biological specimens using GC-ICP-MS with solid phase microextraction. J Anal At Spectrom 19:1546–1551CrossRefGoogle Scholar
  55. 55.
    Houserova P, Kuban V, Kracmar S, Sitko J (2007) Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environ Pollut 145:185–194CrossRefGoogle Scholar
  56. 56.
    Houserova P, Matejicek D, Kuban V, Pavlickova J, Komarek J (2006) Liquid chromatographic-cold vapour atomic fluorescence spectrometric determination of mercury species. J Sep Sci 29:248–255CrossRefGoogle Scholar
  57. 57.
    Chiou CS, Jiang SJ, Danadurai KSK (2001) Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry. Spectrochim Acta B 56:1133–1142CrossRefGoogle Scholar
  58. 58.
    Chang LF, Jiang SJ, Sahayam AC (2007) Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 1176:143–148CrossRefGoogle Scholar
  59. 59.
    Serafimovski I, Karadjova I, Stafilov T, Cvetkovic J (2008) Determination of inorganic and methylmercury in fish by cold vapor atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Microchem J 89:42–47CrossRefGoogle Scholar
  60. 60.
    Lin LY, Chang LF, Jiang SJ (2008) Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry. J Agric Food Chem 56:6868–6872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Laura Hinojosa Reyes
    • 1
  • Jorge Luis Guzmán Mar
    • 1
  • Aracely Hernández-Ramírez
    • 1
  • Juan Manuel Peralta-Hernández
    • 1
  • Juan Manuel Alfaro Barbosa
    • 1
  • H. M. Skip Kingston
    • 2
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico
  2. 2.Department of Chemistry and BiochemistryDuquesne UniversityPittsburghUSA

Personalised recommendations