Advertisement

Microchimica Acta

, Volume 171, Issue 3–4, pp 211–216 | Cite as

Opto-chemical micro-capillary clocks

  • Stefan Wilhelm
  • Otto S. WolfbeisEmail author
Original Paper

Abstract

Opto-chemical capillary clocks are presented that are based on the measurement of a colored segment in a microchannel (a capillary). Color is created by a chromogenic chemistry involving the oxidation of a (virtually colorless) leuco-dye. Poly(ethylene glycol) (PEG) is used as a solvent, and indigo and thioindigo (in their reduced leuco forms) act as oxygen-sensitive dyes. The clock is started by removing one seal at the end of the capillary. A visible color change occurs as air diffuses into the microchannel due to an irreversible color reaction. The length of the colored segment is proportional to the time elapsed. PEGs of different average molar mass affect the diffusion rate of oxygen in the microchannel and thereby affect the rate of the migration of the color front. Both temperature and relative humidity exert a strong effect. Six types of such clocks are described that enable times to be determined in the range from 1 day to 6 months, possibly of even decades.

Optical clocks are presented where elapsed time is indicated by the length of the colored segment of a micro-capillary.

Keywords

Optical timer Chromogenic chemistry Indigo Oxygen Clock Poly(ethylene glycol) 

References

  1. 1.
    Galagan Y, Su WF (2008) Fadable ink for time-temperature control of food freshness: novel new time-temperature indicator. Food Res Int 41:653–657CrossRefGoogle Scholar
  2. 2.
    Galagan Y, Hsu SH, Su WF (2009) Monitoring time and temperature by methylene blue containg polyacrylate film. Sens Actuators B: Chem 144:49–55CrossRefGoogle Scholar
  3. 3.
    Bommarito GM, Mazurek MH, Johnston RP, Yarusso DJ, Larson CL (2004) Microstructured time dependent indicators. US Patent 6,741,523 B1Google Scholar
  4. 4.
    Hsu YC, Sair AI, Booren AM, Smith DM (2000) Triose phosphate isomerase as an endogenous time-temperature integrator to verify adequacy of roast beef processing. J Food Sci 65:236–240CrossRefGoogle Scholar
  5. 5.
    Mendoza TF, Welt BA, Otwell S, Teixeira AA, Kristonsson H, Balaban MO (2004) Kinetic parameter estimation of time-temperature integrators intended for use with packaged fresh seafood. J Food Sci 69:FMS90–FMS96CrossRefGoogle Scholar
  6. 6.
    Ocio MJ, Fernandez PS, Rodrigo M, Periago P, Martinez A (1997) A time-temperature integrator for particulated food: thermal process evaluation. Z Lebensm Unters Forsch A 205:325–328CrossRefGoogle Scholar
  7. 7.
    Rodrigo F, Rodrigo MC, Martinez A (1998) Evaluation of a new time temperature integrator in pilot plant conditions. Z Lebensm Unters Forsch A 206:184–188CrossRefGoogle Scholar
  8. 8.
    Arens RP, Birkholz RD, Johnson DL, Labuza TP, Larson CL, Yarusso DJ (1997) Time-temperature integrating indicator device. US Patent 5,667,303Google Scholar
  9. 9.
    Haas DJ, Holt RJ, Davis LH (2006) Long term rapid color changing time indicator. US Patent 7,139,226 B2Google Scholar
  10. 10.
    Haas DJ (1990) Time indicator enhancement method. US Patent 4,903,254Google Scholar
  11. 11.
    Haas DJ, Haas SF (1997) Long term rapid color changing time indicator. US Patent 5,633,835Google Scholar
  12. 12.
    Manske WJ (1976) Selected time interval indicating device. US Patent 3,954,011Google Scholar
  13. 13.
    Jackson D (1969) Time indicator. US Patent 3,480,402Google Scholar
  14. 14.
    Robertson GL (2006) Food packaging: principles and practice, 2nd edn. Taylor & Francis, New YorkGoogle Scholar
  15. 15.
    Gil L, Barat JM, Escriche I, Garcia-Breijo E, Martinez-Manez R, Soto J (2008) An electronic tongue for fish freshness analysis using a thick-film arry of electrodes. Microchim Acta 163:121–129CrossRefGoogle Scholar
  16. 16.
    Valdés MG, Gonzales ACV, Calzon JAG, Diaz-Garcia ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19CrossRefGoogle Scholar
  17. 17.
    Chen N, Chen N, Chen N (2004) Food freshness indicator. US Patent 6,723,285 B2Google Scholar
  18. 18.
    Huidobro A, Pastor A, Tejada M (2000) Adenosine triphosphate and derivates as freshness indicators of gilthed sea bream. Food Sci Technol Int 7:23–30Google Scholar
  19. 19.
    Gohil RM (2006) Device for indicating the passage of time an method therefore and articles therewith. Pat. Appl. WO 2006/058228 A1Google Scholar
  20. 20.
    Hu KH, Loconti JD (1973) Temperature-time integrating indicator. US Patent 3,768,976Google Scholar
  21. 21.
    Roessler A, Crettenand D, Dossenbach O, Rys P (2003) Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules. J Appl Electrochem 33:901–908CrossRefGoogle Scholar
  22. 22.
    Fanjul-Bolado P, Gonzalez-Garcia MB, Costa-Garcia A (2005) Detection of leucoindigo in alkaline phosphatase and peroxidase based assays using 3-indoxyl phosphate as substrate. Anal Chim Acta 534:231–238CrossRefGoogle Scholar
  23. 23.
    Lewis G (2002) Elapsed time indicator. Pat. Appl. WO 02/46741 A1Google Scholar
  24. 24.
    Lewis G (2002) Tamper evident packaging. Pat. Appl. WO 02/059010 A1Google Scholar
  25. 25.
    Biritz LF (1962) Timer device and method for determination. US Patent 3,018,611Google Scholar
  26. 26.
    Broser W, Kurreck H, Niemeier W (1975) Über paramagnetische Dimerenkomplexe des substituierten Triphenylmetyhlradikals. Tetrahedron 32:1183–1187CrossRefGoogle Scholar
  27. 27.
    Schlenk W, Weickel T, Herzenstein A (1910) Ueber Triphenylmethyl und Analoga des Triphenylmethyls in der Biphenylreihe. Justus Liebigs Ann Chem 372:1–20CrossRefGoogle Scholar
  28. 28.
    Halford JO, Anderson LC (1933) The photochemical production of triphenylmethyl. Proc Natl Acad Sci 19:759–762CrossRefGoogle Scholar
  29. 29.
    Lilly RL, Tummers GLJ, Johnson CD, Davis RD (1980) Elapsed time indicator. US Patent 4,229,813Google Scholar
  30. 30.
    Diekmann TJ, Bommarito GM (2005) Time or time-temperature indicating articles. US Patent 6,916,116 B2Google Scholar
  31. 31.
    Komorsky-Lovric S, Mirceski V, Scholz F (1999) Voltammetry of organic microparticles. Microchim Acta 132:67–77CrossRefGoogle Scholar
  32. 32.
    Vuorema A, John P, Keskitalo M, Marken F (2008) Electrochemical determination of plant-derived leuco-indigo after chemical reduction by glucose. J Appl Electrochem 38:1683–1690CrossRefGoogle Scholar
  33. 33.
    Harris JM (1992) Poly(ethylene glycol) chemistry, biotechnical and biomedical applications. Plenum, New YorkGoogle Scholar
  34. 34.
    Clark RJH, Cooksey CJ, Daniels MAM, Withnall R (1993) Indigo, woad, and Tyrian purple: important vat dyes form antiquity to the present. Endeavour 17:191–199CrossRefGoogle Scholar
  35. 35.
    Alcantar NA, Aydil ES, Israelachvili JN (2000) Poly(ethylene glycol)-coated biocompatible surfaces. J Biomed Mater Res A 51:343–351CrossRefGoogle Scholar
  36. 36.
    Fuertges F, Abuchowski A (1990) The clinical efficacy of poly(ethylene glycol) modified proteins. J Control Release 11:139–148CrossRefGoogle Scholar
  37. 37.
    Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Poly(ethylene glycol) and solutions of poly(ethylene glycol) as green reaction media. Green Chem 7:64–82CrossRefGoogle Scholar
  38. 38.
    Li J, Nagai K, Nakagawa T, Wang S (2003) Preparation of poly(ethylene glycol) and cellulose acetate blend membranes, and their gas permeabilities. J Appl Polym Sci 58:1455–1463CrossRefGoogle Scholar
  39. 39.
    Mills A, Tommons C, Bailey RT, Tedford MC, Crilly PC (2008) UV-activated luminescence/colourimetric oxygen indicator. Intl J Photoenergy; open access article ID 547301; doi: 10.1155/2008/547301; 6 pp
  40. 40.
    Weigl BH, Wolfbeis OS (1994) Capillary optical sensors. Anal Chem 66:3323–3327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations