Microchimica Acta

, Volume 171, Issue 3–4, pp 249–255 | Cite as

Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit

  • Min-Jung Song
  • Jong Hoon Kim
  • Seung Koo Lee
  • Jae-Hyun Lee
  • Dae Soon Lim
  • Sung Woo Hwang
  • Dongmok Whang
Original Paper

Abstract

Boron-doped diamond electrodes covered with a nanostructured Pt nanoparticle-polyaniline composite have been fabricated and employed as sensitive amperometric sensors with low detection limit. A highly conductive boron-doped diamond thin film (BDD) was prepared by chemical vapor deposition, and its morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanostructured composite layer was grown on the BDD electrode by electrochemical deposition of polyaniline and Pt nanoparticles. Glucose oxidase (GOx) was then adsorptively immobilized on the modified BDD electrode. The biosensor displays a large surface area, high catalytic activity of the Pt nanoparticles, efficient electron mediation through the conducting polymer, and low background current of the electrode. The biosensor exhibits an excellent response to glucose, with a broad linear range from 5.9 μM to 0.51 mM, a sensitivity of 5.5 μA·mM−1, a correlation coefficient (R) of 0.9947, and a detection limit of 0.10 μM. The apparent Michaelis-Menten constant (K M app ) and the maximum current density of the electrode are 4.1 mM and 0.021 mA, respectively. This suggests that the immobilized GOx possesses a higher affinity for glucose at the lower K M app , and that the enzymatic reaction rate constitutes the rate-limiting step of the response.

Keywords

Electrochemical sensor Glucose sensor Boron-doped diamond Effective surface area Pt nanoparticles Polyaniline 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-000029) and by the second stage of the Brain Korea 21 Project in 2010. D.W. acknowledges the support by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015035).

Supplementary material

604_2010_432_MOESM1_ESM.docx (408 kb)
ESM 1 (DOCX 407 kb)

References

  1. 1.
    Levy-Clement C, Zenia F, Ndao NA, Deneuville A (1999) Influence of boron content on the electrochemical properties of diamond electrodes. New Diam Front Carbon Technol 9:189Google Scholar
  2. 2.
    Zhou YL, Tian RH, Zhi JF (2007) Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. Biosens Bioelectron 22:822CrossRefGoogle Scholar
  3. 3.
    Zhao J, Wu D, Zhi J (2009) A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry 75:44CrossRefGoogle Scholar
  4. 4.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814CrossRefGoogle Scholar
  5. 5.
    Jaffari SA, Turner APF (1995) Recent advances in amperometric glucose biosensors for in vivo monitoring. Physiol Meas 16:1CrossRefGoogle Scholar
  6. 6.
    Zou Y, Xiang C, Sun LX, Xu F (2008) Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron 23:1010CrossRefGoogle Scholar
  7. 7.
    Foxx D, Kalu EE (2007) Amperometric biosensor based on thermally activated polymer-stabilized metal nanoparticles. Electrochem Commun 9:584CrossRefGoogle Scholar
  8. 8.
    Song MJ, Hwang SW, Whang D (2009) Amperometric glucose biosensor based on a Pt-dispersed hierarchically porous electrode. J Korean Phys Soc 54:1612CrossRefGoogle Scholar
  9. 9.
    Tang Y, Pan K, Wang X, Liu C, Luo S (2010) Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim Acta 168:231CrossRefGoogle Scholar
  10. 10.
    Feng Y, Yang T, Zhang W, Jiang C, Jiao K (2008) Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta 616:144CrossRefGoogle Scholar
  11. 11.
    Nandi M, Gangopadhyay R, Bhaumik A (2008) Mesoporous polyaniline having high conductivity at room temperature. Microporous Mesoporous Mater 109:239CrossRefGoogle Scholar
  12. 12.
    Liu FJ, Huang LM, Wen TC, Gopalan A (2007) Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synth Met 157:651CrossRefGoogle Scholar
  13. 13.
    Wang J, Carlisle JA (2006) Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diam Rel Mat 15:279CrossRefGoogle Scholar
  14. 14.
    Kim JH, Lee SK, Kwon OM, Hong SI, Lim DS (2009) Thickness controlled and smooth polycrystalline CVD diamond film deposition on SiO2 with electrostatic self assembly seeding process. Diam Rel Mat 18:1218CrossRefGoogle Scholar
  15. 15.
    Chu X, Duan D, Shen G, Yu R (2007) Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 71:2040CrossRefGoogle Scholar
  16. 16.
    You C, Li X, Zhang S, Kong J, Zhao D, Liu B (2009) Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Microchim Acta 167:109CrossRefGoogle Scholar
  17. 17.
    Arya SK, Solanki PR, Singh RP, Pandey MK, Datta M, Malhotra BD (2006) Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. Talanta 69:918CrossRefGoogle Scholar
  18. 18.
    Komathi S, Gopalan AI, Lee KP (2009) Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase. Biosens Bioelectron 24:3131CrossRefGoogle Scholar
  19. 19.
    Gopalan AI, Lee KP, Ragupathy D, Lee SH, Lee JW (2009) An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite. Biomaterials 30:5999CrossRefGoogle Scholar
  20. 20.
    Pan D, Chen J, Yao S, Tao W, Nie L (2005) An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode. Anal Sci 21:367CrossRefGoogle Scholar
  21. 21.
    Nebel CE, Yang N, Uetsuka H, Osawa E, Tokuda N, Williams O (2009) Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam Rel Mat 18:910CrossRefGoogle Scholar
  22. 22.
    Zhao W, Xu JJ, Qiu QQ, Chen HY (2006) Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens Bioelectron 22:649CrossRefGoogle Scholar
  23. 23.
    Chen X, Chen J, Deng C, Xiao C, Yang Y, Nie Z, Yao S (2008) Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta 76:763CrossRefGoogle Scholar
  24. 24.
    Wanga YT, Yua L, Zhub ZQ, Zhangb J, Zhub JZ, Fan CH (2009) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sens Actuators B: Chem 136:332CrossRefGoogle Scholar
  25. 25.
    Vidal JC, Garcia E, Castillo JR (2001) Design of a multilayer cholesterol amperometric biosensorfor preparation and use in flow systems. Electroanalysis 13:229CrossRefGoogle Scholar
  26. 26.
    Li G, Liao JM, Hu GQ, Ma NZ, Wu PJ (2005) Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens Bioelectron 20:2140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Min-Jung Song
    • 1
    • 2
  • Jong Hoon Kim
    • 3
  • Seung Koo Lee
    • 3
  • Jae-Hyun Lee
    • 4
  • Dae Soon Lim
    • 3
  • Sung Woo Hwang
    • 1
    • 2
  • Dongmok Whang
    • 1
    • 4
    • 5
  1. 1.Research Center for Time-domain Nano-functional DevicesKorea UniversitySeoulKorea
  2. 2.Department of Electrical EngineeringKorea UniversitySeoulKorea
  3. 3.School of Material and Science EngineeringKorea UniversitySeoulKorea
  4. 4.SKKU Advanced Institute of NanotechnologySungkyunkwan UniversitySuwonKorea
  5. 5.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations