Advertisement

Microchimica Acta

, Volume 169, Issue 3–4, pp 367–373 | Cite as

Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode

  • Wenfang Deng
  • Yueming Tan
  • Yunyong Li
  • Yanqing Wen
  • Zhaohong Su
  • Zhao Huang
  • Suqing Huang
  • Yue Meng
  • Qingji XieEmail author
  • Yueping Luo
  • Shouzhuo Yao
Original Paper

Abstract

Covalent tethering of cysteamine to chitosan using glutaraldehyde yields thiol-functionalized chitosan (CS-SH). It was cast on a glassy carbon electrode which is found to be very stable in acidic solutions and to possess a strong affinity for Hg(II) ions as confirmed by quartz crystal microbalance measurements. A glassy carbon electrode modified with a nanocomposite made from CS-SH and multiwalled carbon nanotubes was applied for square wave voltammetric determination of Hg(II). The procedure comprises the steps of (a) chemical accumulation of Hg(II) under open-circuit condition and (b) electrochemical determination of Hg(II). Linear responses are obtained in the range from 10 to 140 nM, with a limit of detection of 3 nM (S/N = 3) under optimized conditions. The electrode was applied to the determination of Hg(II) in water samples with satisfactory recoveries.

Keywords

Thiol functionalized chitosan Multiwalled carbon nanotubes Hg(II) Square wave stripping voltammetry 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20675029, 90713018, 20335020), the State Special Scientific Project on Water Treatment (2009ZX07212-001-06), the Foundation of the Hunan Provincial Education Department (05K009), and the State Key Laboratory of Electroanalytical Chemistry. W. Deng and Y. Tan contributed equally to this work.

References

  1. 1.
    Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177CrossRefGoogle Scholar
  2. 2.
    Bowels KC, Apte SC (1998) Determination of methylmercury in natural water samples by steam distillation and gas chromatography-atomic fluorescence spectrometry. Anal Chem 70:395CrossRefGoogle Scholar
  3. 3.
    Tu Q, Qvarnstrom J, Frech W (2000) Determination of mercury species by capillary zone electrophoresis-inductively coupled plasma mass spectrometry: a comparison of two spray chamber-nebulizer combinations. Analyst 125:705CrossRefGoogle Scholar
  4. 4.
    Cai X, Kalcher K, Lintschinger J, Neuhold C (1993) Stripping voltammetric determination of trace amounts of mercury using a carbon paste electrode modified with 2-mercapto-4(3H)-quinazolinone. Microchim Acta 112:135CrossRefGoogle Scholar
  5. 5.
    Cesarino I, Cavalheiro ÉTG (2008) Thiol-functionalized silica thin film modified electrode in determination of mercury ions in natural water. Electroanalysis 20:2301CrossRefGoogle Scholar
  6. 6.
    Jeong ED, Won MS, Shim YB (1994) Simultaneous determination of lead, copper, and mercury at a modified carbon paste eletrode containing humic acid. Electroanalysis 6:887CrossRefGoogle Scholar
  7. 7.
    Navratilova Z (1991) Hg(II) voltammetry on a 1, 5-diphenylcarbazide containing carbon paste electrode. Electroanalysis 3:799CrossRefGoogle Scholar
  8. 8.
    Agraza R, Sevilla MT, Hernándeza L (1993) Chemically modified electrode for the simultaneous determination of trace metals and speciation analysis. Anal Chim Acta 273:205CrossRefGoogle Scholar
  9. 9.
    Agraz R, Sevilla MT, Hernandez L (1995) Voltammetric quantification and speciation of mercury compounds. J Electroanal Chem 390:47CrossRefGoogle Scholar
  10. 10.
    Zhang MG, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045CrossRefGoogle Scholar
  11. 11.
    Zhou Q, Xie Q, Fu Y, Su Z, Jia X, Yao S (2007) Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J Phys Chem B 111:11276CrossRefGoogle Scholar
  12. 12.
    Tan Y, Deng W, Ge B, Xie Q, Huang J, Yao S (2009) Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film. Biosens Bioelectron 24:2225CrossRefGoogle Scholar
  13. 13.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469CrossRefGoogle Scholar
  14. 14.
    Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43CrossRefGoogle Scholar
  15. 15.
    Marcolino-Junior LH, Janegitz BC, Lourenção BC, Fatibello-Filho O (2007) Anodic stripping voltammetric determination of mercury in water using a chitosan-modified carbon paste electrode. Anal Lett 40:3119CrossRefGoogle Scholar
  16. 16.
    Janegitza BC, Marcolino-Juniorb LH, Campana-Filhoc SP, Fariaa RC, Fatibello-Filhoa O (2009) Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens Actuat B 142:260CrossRefGoogle Scholar
  17. 17.
    Qu R, Sun C, Ma F, Zhang Y, Ji C, Xu Q, Wang C, Chen H (2009) Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers. J Hazard Mater 167:717CrossRefGoogle Scholar
  18. 18.
    Merrifield JD, Davids WG, MacRae JD, Amirbahman A (2004) Uptake of mercury by thiol-grafted chitosan gel beads. Water Res 38:3132CrossRefGoogle Scholar
  19. 19.
    Ngah WSW, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous onto chitosan and crosslinked chitosan beads. React Funct Polym 50:181CrossRefGoogle Scholar
  20. 20.
    Haddon RC (2002) Carbon nanotubes. Acc Chem Res 35:977CrossRefGoogle Scholar
  21. 21.
    Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separ Purif Techno 58:224CrossRefGoogle Scholar
  22. 22.
    Liu G, Lin Y, Tu Y, Ren Z (2005) Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 130:1098CrossRefGoogle Scholar
  23. 23.
    Deng W, Tan Y, Fang Z, Xie Q, Li Y, Liang X, Yao S (2009) ABTS-multiwalled carbon nanotubes nanocomposite/Bi film electrode for the sensitive determination of Cd and Pb by differential pulse stripping voltammetry. Electroanalysis 21:2477Google Scholar
  24. 24.
    Sun D, Xie X, Cai Y, Zhang H, Wu K (2007) Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film. Anal Chim Acta 581:27CrossRefGoogle Scholar
  25. 25.
    Wei X, Cruz J, Gorski W (2002) Integration of enzymes and electrodes: spectroscopic and electrochemical studies of chitosan-enzyme films. Anal Chem 74:5039CrossRefGoogle Scholar
  26. 26.
    Martin SJ, Granstaff VE, Frye GC (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63:2272CrossRefGoogle Scholar
  27. 27.
    Xie Q, Wang J, Zhou A, Zhang Y, Liu H, Xu Z, Yuan Y, Deng M, Yao S (1999) A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal Chem 71:4649CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wenfang Deng
    • 1
  • Yueming Tan
    • 1
  • Yunyong Li
    • 1
  • Yanqing Wen
    • 1
  • Zhaohong Su
    • 1
  • Zhao Huang
    • 1
  • Suqing Huang
    • 1
  • Yue Meng
    • 1
  • Qingji Xie
    • 1
    Email author
  • Yueping Luo
    • 2
  • Shouzhuo Yao
    • 1
  1. 1.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaChina
  2. 2.Environmental Monitoring Center of Hunan ProvinceChangshaChina

Personalised recommendations