Microchimica Acta

, Volume 170, Issue 3–4, pp 243–249 | Cite as

A disposable biosensor for the determination of alpha-amylase in human saliva

  • Mika Mahosenaho
  • Felice Caprio
  • Laura Micheli
  • Adama M. Sesay
  • Giuseppe Palleschi
  • Vesa Virtanen
Original Paper


A disposable tri-enzymatic biosensor is presented for the determination of α-amylase in human saliva. It is based on the quantity of maltose generated by hydrolysis of maltopentose in the presence of salivary α-amylase. The biosensor is fabricated by co-immobilization of the enzymes α-glucosidase, glucose oxidase, and mutarotase on screen-printed electrodes modified with Prussian Blue. The assay can be performed with a “drop” of sample, this allowing for ease and simplicity. A linear relationship is found for the range from 5 to 250 units per mL, with an LOD of 5 units per mL. The biosensor is stable for at least one month and over this time retains 80% of its original activity. The system was then evaluated for matrix effects of human saliva and compared to a spectrometric method using a commercially available kit.


Biosensor Alpha amylase Biomarker Saliva Stress 



This research was funded by Measurepolis Research Consortium (MeRC) and Kainuu Development Fund, Finland.


  1. 1.
    Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17(2):129–34CrossRefGoogle Scholar
  2. 2.
    Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34(4):486–96CrossRefGoogle Scholar
  3. 3.
    Chatterton RT, Vogelsong KM et al (1996) Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 16(4):433–48CrossRefGoogle Scholar
  4. 4.
    Rohleder N, Nater UM et al (2004) Psychosocial stress-induced activation of salivary alpha-amylase: an indicator of sympathetic activity? Ann NY Acad Sci 1032:258–63CrossRefGoogle Scholar
  5. 5.
    Takai N, Yamaguchi M et al (2004) Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Bio l 49(12):963–8CrossRefGoogle Scholar
  6. 6.
    Nater UM, Rohleder N et al (2005) Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol 55(3):333–42CrossRefGoogle Scholar
  7. 7.
    Granger DA, Kivlighan KT et al (2007) Salivary alpha-amylase in biobehavioral research: recent developments and applications. Ann NY Acad Sci 1098:122–44CrossRefGoogle Scholar
  8. 8.
    Scannapieco FA, Torres G et al (1993) Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4(3–4):301–7Google Scholar
  9. 9.
    Bosch JA, Turkenburg M et al (2003) Stress as a determinant of saliva-mediated adherence and coadherence of oral and nonoral microorganisms. Psychosom Med 65(4):604–12CrossRefGoogle Scholar
  10. 10.
    Zou C, Zhou M, Xie G, Luo P et al (2008) Preparation of disposable Saliva a- amylase biosensor. Chin J Anal Chem 36(9):1217–1220CrossRefGoogle Scholar
  11. 11.
    Yamaguchi M, Deguchi M, Wakasugi J (2005) Flat-Chip microanalytical enzyme sensor for salivary amylase activity. Biomed Microdevices 7(4):295–300CrossRefGoogle Scholar
  12. 12.
    Yamaguchi M, Deguchi M et al (2006) Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment. Biosens Bioelectron 21(7):1007–14CrossRefGoogle Scholar
  13. 13.
    Yamaguchi M, Wakasugi J et al (2008) Competitive and product inhibition-based [alpha]-amylase activity analysis method. Clin Biochem 41(4–5):325–330CrossRefGoogle Scholar
  14. 14.
    Zajoncová L, Jílek M, Beranová V, Peč P (2004) A biosensor for the determination of amylase activity. Biosens Bioelectron 20:240–245CrossRefGoogle Scholar
  15. 15.
    Ricci F, Amine A et al (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18(2–3):165–74CrossRefGoogle Scholar
  16. 16.
    Pratten J, Wills K, Barnett P, Wilson M (1998) In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. J Appl Microbiol 84:1149–1155CrossRefGoogle Scholar
  17. 17.
    Poll E, Kreitschmann-Andermahr I, Langejuergen Y, Stanzel S, Gilsbach JM, Gressner A, Yagmur E (2007) Saliva collection method affects predictability of serum cortisol. Clin Chim Acta 382(1–2):15–19CrossRefGoogle Scholar
  18. 18.
    Yamaguchi M, Kanemaru M, Kanemori T, Mizuno Y (2003) Flow-Injection type biosensor system for salivary amylase activity. Biosens Bioelectron 18:835–840CrossRefGoogle Scholar
  19. 19.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimization and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–40CrossRefGoogle Scholar
  20. 20.
    Dahlqvist A (1961) Determination of maltase and isomaltase activities with a glucose- oxidase reagent. Biochem J 80:547–551Google Scholar
  21. 21.
    Shannon TL (1973) Blood and saliva glucose levels in relation to gingival health. J Indian Dent Assoc 45(10):299–302Google Scholar
  22. 22.
    Jurysta C, Bulur N, Oguzhan B, Satman I, Yilmaz TM, Malaisse WJ, Sener A (2009) Salivary glucose concentration and excretion in normal and diabetic subjects. J Biom Biotechn 430426. One-line pub 2009 May 26.Google Scholar
  23. 23.
    Speirs RL, Herring J, Cooper WD, Hardy CC, Hind CRK (1974) The influence of sympathetic activity and isoprenaline on the secretion of amylase from human parotid gland. Archs oral Biol 19:747–752CrossRefGoogle Scholar
  24. 24.
    Abell AD, Ratcliffe MJ, Gerrard J (1998) Ascorbic acid-based inhibitors of α-amylases. Bioorg Chem Lett 8:1703–1706CrossRefGoogle Scholar
  25. 25.
    Rauscher E, Neumann U, Schsich E, von Bülow S, Wahlefeld AW (1985) Optimized conditions for determining activity concentration of α-amylase in serum with 1, 4-α-D-α-nitrophenylmaltoheptaoside as substrate. Cli Chem 31(1):14–19Google Scholar
  26. 26.
    Feller RP, Black KHS, Shannon IL (1975) Evidence for absence of ascorbic acid in human saliva. Arch Oral Biol 20(9):563–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mika Mahosenaho
    • 1
  • Felice Caprio
    • 2
  • Laura Micheli
    • 2
  • Adama M. Sesay
    • 1
  • Giuseppe Palleschi
    • 2
  • Vesa Virtanen
    • 1
  1. 1.Laboratory of Biotechnology, Kajaani University consortiumOulu UniversitySotkamoFinland
  2. 2.Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations