Advertisement

Microchimica Acta

, Volume 169, Issue 3–4, pp 335–343 | Cite as

Optimization of acetylcholinesterase immobilization on microelectrodes based on nitrophenyl diazonium for sensitive organophosphate insecticides detection

  • Ovidiu Ilie Covaci
  • Bogdan Bucur
  • Madalina Petruta Bucur
  • Gabriel Lucian Radu
Original Paper

Abstract

The immobilization of acetylcholinesterase on platinum microelectrodes modified with p-nitrobenzenediazonium is optimized. In the first step, a layer of p-nitrophenyl groups was deposited on the surface and then reduced to p-aminophenyl groups. Finally, the enzyme was linked to the amino groups on the surface using glutaraldehyde. Each step of the electrode modification was characterized by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) at acidic and neutral pH to modify the electric charges of different bound moieties. The deposition of diazonium groups was attempted by potentiometry, amperometry or CV, but only potentiometry proceeded without passivation of the surface. The use of microelectrodes improved the limit of detection of ethylparaoxon measurements to 20 nM (compared to 100 nM in case of screen-printed electrodes based on the same method of immobilization). The method allowed the production of stable and reproducible amperometric microbiosensors and may be adapted to other enzymes and electrode materials.

Keywords

Microelectrode Diazonium salt Enzyme immobilization Enzymatic microbiosensor 

Notes

Acknowledgements

This work was supported by Romanian Ministry of Education and Research through Grants MICROSEN 11049/2007 and SAFEFOOD 61-030/2007. Ovidiu Ilie Covaci is a Ph. D. student with an AMPOSDRU scholarship.

Supplementary material

604_2010_336_MOESM1_ESM.doc (2.8 mb)
ESM 1 (DOC 2.82 mb)

References

  1. 1.
    Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotehnol 23(8):420–428CrossRefGoogle Scholar
  2. 2.
    Anderson BB, Ewing AG (1999) Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. J Pharmaceut Biomed Anal 19:15–32CrossRefGoogle Scholar
  3. 3.
    Krinke D, Jahnke HG, Pänke O, Robitzki AA (2009) A microelectrode-based sensor for label-free in vitro detection of ischemic effects on cardiomyocytes. Biosens Bioelectron 24:2798–2803CrossRefGoogle Scholar
  4. 4.
    Wang Y, Chen ZZ, Li QL (2010) Microfluidic techniques for dynamic single-cell analysis. Microchim Acta. doi: 10.1007/s00604-010-0296-2, In pressGoogle Scholar
  5. 5.
    Matysik FM (2008) Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Microchim Acta 160:1–14CrossRefGoogle Scholar
  6. 6.
    Wang J (2000) Microelectrodes. In: Wang J (ed) Analytical Electrochemistry, 2nd edn. Wiley-VCH, New York, pp 128–134Google Scholar
  7. 7.
    Brown RJC, Brett DJL (2009) Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients. Microchim Acta 164:337–344CrossRefGoogle Scholar
  8. 8.
    Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20:1113–1126CrossRefGoogle Scholar
  9. 9.
    Mitala JJ Jr, Michael AC (2006) Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 556:326–332CrossRefGoogle Scholar
  10. 10.
    Rijiravanich P, Aoki K, Chen J, Surareungchai W, Somasundrum M (2006) Micro-cylinder biosensors for phenol and catechol based on layer-by-layer immobilization of tyrosinase on latex particles: theory and experiment. J Electroanal Chem 589:249–258CrossRefGoogle Scholar
  11. 11.
    Hamdi N, Wang J, Walker E, Maidment NT, Monbouquette HG (2006) An electroenzymatic L-glutamate microbiosensor selective against dopamine. J Electroanal Chem 591:33–40CrossRefGoogle Scholar
  12. 12.
    Schuvailo OM, Soldatkin OO, Lefebvre A, Cespuglio R, Soldatkin AP (2006) Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Anal Chim Acta 573–574:110–116CrossRefGoogle Scholar
  13. 13.
    Yang M, Yang Y, Yang Y, Shen G, Yu R (2005) Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane. Anal Chim Acta 530:205–211CrossRefGoogle Scholar
  14. 14.
    Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439CrossRefGoogle Scholar
  15. 15.
    Marquette CA, Bouteille F, Corgier BP, Degiuli A, Blum LJ (2009) Disposable screen-printed chemiluminescent biochips for the simultaneous determination of four point-of-care relevant proteins. Anal Bioanal Chem 393(4):1191–1198CrossRefGoogle Scholar
  16. 16.
    Corgier BP, Marquette CA, Blum LJ (2007) Diazonium–protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. J Am Chem Soc 127(51):18328–18332CrossRefGoogle Scholar
  17. 17.
    Corgier BP, Laurent A, Perriat P, Blum LJ, Marquette CA (2007) A versatile method for direct and covalent immobilization of DNA and proteins on biochips. Angew Chem Int Ed 46:4108–4110CrossRefGoogle Scholar
  18. 18.
    Radi AE, Muñoz-Berbel X, Cortina-Puig M, Marty JL (2009) Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface. Electroanal 21(6):696–700CrossRefGoogle Scholar
  19. 19.
    Radi AE, Montorne JM, O’Sullivan CK (2006) Reagentless detection of alkaline phosphatase using electrochemically grafted films of aromatic diazonium salts. J Electroanal Chem 587:140–147CrossRefGoogle Scholar
  20. 20.
    Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: reusable hydrazine amperometric sensor. J Electroanal Chem 592:139–146CrossRefGoogle Scholar
  21. 21.
    Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic sensing of NADH on a glassy carbon electrode modified with electrografted o-aminophenol film. Electrochem Commun 8:1719–1725CrossRefGoogle Scholar
  22. 22.
    Roe A (1949) Preparation of aromatic fluorine compounds from diazonium fluoborates: the Schiemann reaction. In: Adams R (ed) Organic reactions, vol 5. Willey, New York, pp 193–228Google Scholar
  23. 23.
    Janin M, Ghilane J, Randriamahazaka H, Lacroix JC (2009) Microelectrodes modification through the reduction of aryl diazonium and their use in scanning electrochemical microscopy (SECM). Electrochem Commun 11:647–650CrossRefGoogle Scholar
  24. 24.
    Hermans A, Seipel AT, Miller CE, Wightman RM (2006) Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir 22(5):1964–1969CrossRefGoogle Scholar
  25. 25.
    Kariuki JK, McDermott MT (2001) Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts. Langmuir 17(19):5947–5951CrossRefGoogle Scholar
  26. 26.
    Kaplan LJ, Foster JF (1971) Isoelectric focusing behavior of bovine plasma albumin, mercaptalbumin, and β-lactoglobulins A and B. Biochemistry-US 10(4):630–636CrossRefGoogle Scholar
  27. 27.
    Sheffer M, Vivier V, Mandler D (2007) Self-assembled monolayers on Au microelectrodes. Electrochem Commun 9:2827–2832CrossRefGoogle Scholar
  28. 28.
    Ates M, Sarac AS (2009) Electrochemical impedance spectroscopy of poly[carbazole-co-N-p-tolylsulfonyl pyrrole] on carbon fiber microelectrodes, equivalent circuits for modeling. Prog Org Coat 65:281–287CrossRefGoogle Scholar
  29. 29.
    Raistrick DI, Franceschetti DR, Macdonald JR (2005) Physical and electrochemical models. In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy theory, experiment, and applications, 2nd edn. Wiley, New York, pp 80–128Google Scholar
  30. 30.
    Sarac AS, Sezgin S, Ates M, Turhan CM (2008) Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes. Surf Coat Tech 202:3997–4005CrossRefGoogle Scholar
  31. 31.
    Andreescu S, Noguer T, Magearu V, Marty JL (2002) Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta 57:169–176CrossRefGoogle Scholar
  32. 32.
    Zhang S, Zhao H, John R (2001) A theoretical model for immobilized enzyme inhibition biosensors. Electroanalysis 13:1528–1534CrossRefGoogle Scholar
  33. 33.
    Valdés-Ramírez G, Fournier D, Ramírez-Silva MT, Marty JL (2008) Sensitive amperometric biosensor for dichlorovos quantification: application to detection of residues on apple skin. Talanta 74:741–746CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ovidiu Ilie Covaci
    • 1
  • Bogdan Bucur
    • 2
  • Madalina Petruta Bucur
    • 2
  • Gabriel Lucian Radu
    • 1
  1. 1.Applied Chemistry and Materials Science FacultyPolytechnica University of BucharestBucharestRomania
  2. 2.National Institute of Research and Development of Biological SciencesBioanalysis CenterBucharestRomania

Personalised recommendations