Microchimica Acta

, Volume 169, Issue 3–4, pp 201–220 | Cite as

Flow based immuno/bioassay and trends in micro-immuno/biosensors

Review Article


The term immuno/bioassay refers to analytical techniques that utilize the specific molecular recognition between antibodies and antigens or between biomolecules and specific receptors. Features such as high selectivity and low sample consumption make them very useful for analysis of samples with complex matrices. However, immuno/bioassays involve time-consuming (multi-step) operations which usually consist of steps of multiple incubation and washing. These are tedious and may result in large errors. Automatted immuno/bioassay systems can ease and shorten these processes and thus are highly beneficial. The hyphenation of flow-based techniques (i.e. flow injection related techniques and micro-fluidic systems) with immuno/bioassay protocols paves a new way for performing such assays. Compared to conventional micro-plate formats, flow-based immuno/bioassays can reduce the time needed for analysis, the volumes of samples and reagents consumed, and the need for trained personnel. In order to transform immuno/bioassays from conventional to flow-based formats, the solid surfaces used for the immobilization step has to be changed in order to meet the specific requirements of flow systems. To further develop the on-site analytical systems in micro-fluidic platforms, improvements in detection methods are necessary for high-sensitivity and rapid measurement. This review overviews the advantages and disadvantages of flow-based immuno/bioassay formats, the various types of solid surfaces for immobilization, and the methods of detection. Trends to improve sensitivity, speed and robustness are emphasized.


Flow injection Immunoassay Bioassay Sensors 



The authors thank the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and the Center for Innovation in Chemistry (PERCH-CIC) for support.


  1. 1.
    Silvaieh H, Schmid MG, Hofstetter O, Schurig V, Gubitz G (2002) Development of enantioselective chemiluminescence flow- and sequential-injection immunoassays for α-amino acids. J Biochem Biophys Methods 53:1CrossRefGoogle Scholar
  2. 2.
    Marx A, Hock B (2000) Monoclonal antibody-based enzyme immunoassay for mercury (II) determination. Methods 22:49CrossRefGoogle Scholar
  3. 3.
    Jeon M, Paeng IR (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626:180CrossRefGoogle Scholar
  4. 4.
    Sarimehmetogu B, Aksoy MH, Ayaz ND, Ayaz Y, Kuplulu O, Kaplan YZ (2009) Detection of Escherichia coli O157:H7 in ground beef using immunomagnetic separation and multiplex PCR. Food Control 20:357CrossRefGoogle Scholar
  5. 5.
    Valdés MG, González ACV, Calzón JAG, Díaz-Garcia ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1CrossRefGoogle Scholar
  6. 6.
    Xu T, Cho IK, Wang D, Rubio FM, Shelver WL, Gasc AME, Li J, Li QX (2009) Suitability of a magnetic particle immunoassay for the analysis of PBDEs in Hawaiian euryhaline fish and crabs in comparison with gas chromatography/electron capture detection-ion trap mass spectrometry. Environ Pollut 157:417CrossRefGoogle Scholar
  7. 7.
    Watson DS, Reddy SM, Brahmakshatriya V, Lupiani B (2009) A multiplexed immunoassay for detection of antibodies against avian influenza virus. J Immunol Methods 340:123Google Scholar
  8. 8.
    Hang J, Sundaram AK, Zhu P, Shelton DR, Karns JS, Martin PAW, Li S, Amstutz P, Tang C (2008) Development of a rapid and selective immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples. J Microbiol Methods 73:242CrossRefGoogle Scholar
  9. 9.
    Hu C, Gan N, He Z, Song L (2008) A novel chemiluminescent immunoassay for microcystin (MC) detection based on gold nanoparticles label and its application to MC analysis in aquatic environmental samples. Int J Environ Anal Chem 88:267CrossRefGoogle Scholar
  10. 10.
    DoubleQ Lab LLC. Automatic Chemiluminescence Immunoassay Analyzer QQ-120. Available via DIALOG http://www.made-in-china.com. Access 8 Feb 2010
  11. 11.
    Perkin Elmer. Auto DELFIA automatic immunoassay system. Available via DIALOG http://las.perkinelmer.com/Catalog/default.htm?CategoryID=Automatic+immunoassay+for+Adult+Health. Access 8 Feb 2010
  12. 12.
    Gui W, Wang S, Gua Y, Zhu G (2008) Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal Biochem 377:202CrossRefGoogle Scholar
  13. 13.
    Weetal HH, Rogers KR (2002) A simple assay for 2, 4-dichlorophenoxyacetic using coated test-strips. Anal Lett 35:1341CrossRefGoogle Scholar
  14. 14.
    Bernert JT, Harmon TL, Sosnoff CS, McGuffery JE (2005) Use of cotinine immunoassay test strips for preclassifying urine samples from smokers and nonsmokers prior to analysis by LC-MS-MS. J Anal Toxicol 29:814Google Scholar
  15. 15.
    Hartwell SK, Pathanon K, Fongmoon D, Kongtawelert P, Grudpan K (2007) Exploiting flow injection system with mini-immunoaffinity chromatographic column for chondroitin sulfate proteoglycans assay. Anal Bioanal Chem 388:1839CrossRefGoogle Scholar
  16. 16.
    Hartwell SK, Somprayoon D, Kongtawelert P, Ongchai S, Arppornchayanon O, Ganranoo L, Lapanantnoppakhun S, Grudpan K (2007) Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system. Anal Chim Acta 600:188CrossRefGoogle Scholar
  17. 17.
    Loennberg M, Drevin M, Carlsson J (2008) Ultra-sensitive immunochromatographic assay for quantitative determination of erythropoietin. J Immunol Methods 339:236CrossRefGoogle Scholar
  18. 18.
    Fintschenko Y, Wilson GS (1998) Flow injection immunoassays: a review. Microchim Acta 129:7CrossRefGoogle Scholar
  19. 19.
    Gübitz G, Schmid MG, Silviaeh H, Aboul-Enein HY (2001) Chemiluminescence flow-injection immunoassays. Crit Rev Anal Chem 31:141CrossRefGoogle Scholar
  20. 20.
    Jakeway SC, de Mello AJ, Russel EL (2000) Miniaturized total analysis systems for biological analysis. Fresen J Anal Chem 366:525CrossRefGoogle Scholar
  21. 21.
    Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11CrossRefGoogle Scholar
  22. 22.
    Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488CrossRefGoogle Scholar
  23. 23.
    Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611:17CrossRefGoogle Scholar
  24. 24.
    Chan CP, Cheung Y, Renneberg R, Seydack M (2008) New trends in immunoassays. Adv Biochem Eng/Biotechnol 109:123CrossRefGoogle Scholar
  25. 25.
    Kojima R, Matawari K, Renberg B, Tsukahara T, Kitamori T (2009) Integration of immunoassay into extended nanospace. Microchim Acta 164:307CrossRefGoogle Scholar
  26. 26.
    Themelis DG, Karastogianni SC, Tzanavaras PD (2009) Selective determination of cyanides by gas diffusion-stopped flow-sequential injection analysis and an on-line standard addition approach. Anal Chim Acta 632:93CrossRefGoogle Scholar
  27. 27.
    Manuel M, Hartwell SK, Jakmunee J, Grudpan K, Hansen EH (2008) Recent developments in automatic solid-phase extraction with renewable surfaces exploiting flow based approaches. TrAC-Trend Anal Chem 27:749CrossRefGoogle Scholar
  28. 28.
    Luque de Castro MD, Ruiz-Jimenez J, Perez-Serradilla JA (2008) Lab-on-valve: a useful tool in biochemical analysis. TrAC-Trend Anal Chem 27:118CrossRefGoogle Scholar
  29. 29.
    Jakmunee J, Pathimapornlert L, Hartwell SK, Grudpan K (2005) Novel approach for mono-segmented flow micro-titration with sequential injection using lab-on-valve system; a model study for the assay of acidity in fruit juices. Analyst 130:299CrossRefGoogle Scholar
  30. 30.
    Burakham R, Lapanantnoppakhun S, Jakmunee J, Grudpan K (2005) Exploiting sequential injection analysis with lab-at-valve (LAV) approach for on-line liquid–liquid micro-extraction. Talanta 68:416CrossRefGoogle Scholar
  31. 31.
    Yan F, Zhou J, Lin J, Ju H, Hu X (2005) Flow injection immunoassay for carcinoembryonic antigen combined with time-resolved fluorometric detection. J Immunol Methods 305:120CrossRefGoogle Scholar
  32. 32.
    Li L, Yan J, Zhao M (2006) Improvement of the performance of an immunoaffinity extraction method via region-specific immobilization of IgG. J Chromatogr A 1103:350CrossRefGoogle Scholar
  33. 33.
    Gam L, Tham S, Latiff A (2003) Immunoaffinity extraction and tandem mass spectrometric analysis of human chorionic gonadotropin in doping analysis. J chromatogr B 792:187CrossRefGoogle Scholar
  34. 34.
    Gutzman Y, Carroll AD, Ruzicka J (2006) Bead injection for biomolecular assays: affinity chromatography enhanced by bead injection spectroscopy. Analyst 131:809CrossRefGoogle Scholar
  35. 35.
    Yang Z, Fu Z, Yan F, Liu H, Ju H (2008) A chemiluminescent immunosensor based on antibody immobilized carboxylic resin beads coupled with micro-bubble accelerated immunoreaction for fast flow-injection immunoassay. Biosens Bioelectron 24:35CrossRefGoogle Scholar
  36. 36.
    Wang S, Du L, Lin S, Zhuang H (2006) Flow injection chemiluminescence for the determination of estriol via a noncompetitive enzyme immunoassay. Microchim Acta 155:421CrossRefGoogle Scholar
  37. 37.
    Phillips TM (2001) Multi-analyte analysis of biological fluids with a recycling immunoaffinity column array. J Biochem Biophys Methods 49:253CrossRefGoogle Scholar
  38. 38.
    Wijayawardhana CA, Halsall HB, Heineman WR (1999) Micro volume rotating disk electrode (RDE) amperometric detection for a bead-based immunoassay. Anal Chim Acta 399:3CrossRefGoogle Scholar
  39. 39.
    Wijayawardhana CA, Purushothama S, Cousino MA, Halsall HB, Heineman WR (1999) Rotating disk electrode amperometric detection for a bead-based immunoassay. J Electroanal Chem 468:2CrossRefGoogle Scholar
  40. 40.
    Purushotahama S, Kradtap S, Wijayawardhana CA, Halsall HB, Heineman WR (2001) Small volume bead assay for ovalbumin with electrochemical detection. Analyst 126:337CrossRefGoogle Scholar
  41. 41.
    Kradtap S, Wijayawardhana CA, Schlueter KT, Halsall HB, Heineman WR (2001) “Bugbead” an artificial microorganism model used as a harmless simulant for pathogenic microorganisms. Anal Chim Acta 444:13CrossRefGoogle Scholar
  42. 42.
    Tang Z, Graefe K, March C, Karnes HT (2004) Magnetic separation immunoassay for digoxin in plasma with flow injection fluorescence detection. Microchim Acta 144:1CrossRefGoogle Scholar
  43. 43.
    Ruzicka J, Pollema CH, Scudder KM (1993) Jet ring cell: a tool for flow injection spectroscopy and microscopy on a renewable solid support. Anal Chem 65:3566CrossRefGoogle Scholar
  44. 44.
    Ozanich RM, Bruckner-Lea CJ, Warner MG, Miller K, Antolick KC, Marks JD, Lou J, Grate JW (2009) Rapid multiplexed flow cytometric assay for botulinum neurotoxin detection using an automated fluidic microbead-trapping flow cell for enhanced sensitivity. Anal Chem 81:5783CrossRefGoogle Scholar
  45. 45.
    Ocean Optics, Micro SIA with lab on valve system from Ocean Optics. Available via DIALOG http://www.unice.com.tw/products/Ocean/Documentation/view/Catalog/SAMPLING_ACCESSORIES/Sampling_Cells.pdf. Access 8 Feb 2010
  46. 46.
    Botchkareva AE, Fini F, Eremin S, Mercader JV, Montoya A, Girotti S (2002) Development of a heterogeneous chemiluminescent flow immunoassay for DDT and related compounds. Anal Chim Acta 453:43CrossRefGoogle Scholar
  47. 47.
    Hartwell SK, Srisawang B, Kongtawelert P, Jakmunee J, Grudpan K (2005) Sequential injection-ELISA based system for online determination of hyaluronan. Talanta 66:521CrossRefGoogle Scholar
  48. 48.
    Pappert G, Rieger M, Niessner R, Seidel M (2010) immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli. Microchim Acta 168:1CrossRefGoogle Scholar
  49. 49.
    Thomas JH, Ronkainen-Matsuno NJ, Farrell S, Halsall HB, Heineman WR (2003) Microdrop analysis of a bead-based immunoassay. Microchem J 74:267Google Scholar
  50. 50.
    Thomas JH, Kim SK, Hesketh PJ, Halsall HB, Heineman WR (2004) Bead-based electrochemical immunoassay for bacteriophage MS2. Anal Chem 76:2700CrossRefGoogle Scholar
  51. 51.
    Boyaci IH, Aguilar ZP, Hossain M, Halsall HB, Seliskar CJ, Heineman WR (2005) Amperometric determination of live Escherichia coli using antibody-coated paramagnetic beads. Anal Bioanal Chem 382:1234CrossRefGoogle Scholar
  52. 52.
    Kuramitz H, Dziewatkoski M, Barnett B, Halsall HB, Heineman WR (2006) Application of an automated fluidic system using electrochemical bead-based immunoassay to detect the bacteriophage MS2 and ovalbumin. Anal Chim Acta 561:69CrossRefGoogle Scholar
  53. 53.
    Kuramitz H (2009) Magnetic micro-bead-based electrochemical immunoassays. Anal Bioanal Chem 394:61CrossRefGoogle Scholar
  54. 54.
    Zhang R, Nakajima H, Soh N, Nakano K, Masadome T, Nagata K, Sakamoto K, Imato T (2007) Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Anal Chim Acta 600:105CrossRefGoogle Scholar
  55. 55.
    Hirakawa K, Katayama M, Soh N, Nakano K, Ohura H, Yamasaki S, Imato T (2006) Electrochemical sandwich immunoassay for vitellogenin by sequential injection analysis using antibody immobilized magnetic microbeads. Electroanal 18:1297CrossRefGoogle Scholar
  56. 56.
    Liu H, Fu Z, Yang Z, Yan F, Ju H (2008) Sampling-resolution strategy for one-way multiplexed immunoassay with sequential chemiluminescent detection. Anal Chem 80:5654CrossRefGoogle Scholar
  57. 57.
    Kim SK, Hesketh PJ, Li C, Thomas JH, Halsall HB, Heineman WR (2004) Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosens Bioelectron 20:887Google Scholar
  58. 58.
    Zimmermann M, Hunziker P, Delamache E (2009) Autonomous capillary system for one-step immunoassays. Biomed Microdevices 11:1CrossRefGoogle Scholar
  59. 59.
    Jiang T, Halsall HB, Heineman WR (1995) Capillary enzyme immunoassay with electrochemical detection for the determination of atrazine in water. J Agric Food Chem 43:1098CrossRefGoogle Scholar
  60. 60.
    Nister C, Emnèus J (2003) A capillary-based amperometric flow immunoassay for 2, 4, 6-trichlorophenol. Anal Bioanal Chem 375:125Google Scholar
  61. 61.
    Zhang J, Heineman WR, Halsall HB (1999) Capillary electrochemical enzyme immunoassay (CEEI) for Phenobarbital in serum. J Pharm Biomed Anal 19:145CrossRefGoogle Scholar
  62. 62.
    Gao H, Jiang T, Heineman WR, Halsall HB, Caruso JL (1999) Capillary enzyme immunoassay with electrochemical detection for determining indole-s-acetic acid in tomato embryos. Fresen J Anal Chem 364:170CrossRefGoogle Scholar
  63. 63.
    Hartwell SK, Kongtawelert P, Jakmunee J, Lapanantnoppakhun S, Grudpan K Development of flow based bioassay systems, Abst. 235th ACS National Meeting, New Orleans, LA, USA, April 6–10, 2008Google Scholar
  64. 64.
    Mastichiadis C, Niotis AE, Petrou PS, Kakabakos SE, Misiakos K (2008) Capillary-based immunoassays immunosensors and DNA sensors- steps towards integration and multi-analysis. TrAC-Trend Anal Chem 27:771CrossRefGoogle Scholar
  65. 65.
    Hartwell SK, Boonmalai A, Kongtawelert P, Grudpan K (2010) Sequential injection-immunoassay system with a plain glass capillary reactor for the assay of hyaluronan. Anal Sci 26:69CrossRefGoogle Scholar
  66. 66.
    Hartwell SK, Wannaprom N, Kongtawelert P, Grudpan K (2009) Sequential injection capillary immunoassay system for determination of sialoglycoconjugates. Talanta 79:1209CrossRefGoogle Scholar
  67. 67.
    Holt DB, Gauger PR, Kusterbeck AW, Ligler FS (2002) Fabrication of a capillary immunosensor in polymethyl methacrylate. Biosens Bioelectron 17:95CrossRefGoogle Scholar
  68. 68.
    Babu S, Mohapatra S, Zubkov L, Murthy S, Papazoglou E (2009) A PMMA microcapillary quantum dot linked immunosorbent assay (QLISA). Biosens Bioelectron 24:3467CrossRefGoogle Scholar
  69. 69.
    Niotis AE, Mastichiadis C, Petrou PS, Cristofidis I, Siafaka-Kapadai A, Misiakos K, Kakabakos SE (2009) Capillary waveguide fluoroimmunosensor with improved repeatability and detection sensitivity. Anal Bioanal Chem 393:1081CrossRefGoogle Scholar
  70. 70.
    Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth T, Feller KA (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens Bioelectron 22:1368CrossRefGoogle Scholar
  71. 71.
    Chen H, Huang T, Zhang X (2009) Immunoaffinity extraction of testosterone by antibody immobilized monolithic capillary with on-line laser-induced fluorescence detection. Talanta 78:259CrossRefGoogle Scholar
  72. 72.
    Zhang S, Cao W, Li J, Su M (2009) MCE enzyme immunoassay for carcinoembryonic antigen and alpha-fetoprotein using electrochemical detection. Electrophoresis 30:3427CrossRefGoogle Scholar
  73. 73.
    Wang X, Song Y, Song M, Wang Z, Li T, Wang H (2009) Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation. Anal Chem 81:7885CrossRefGoogle Scholar
  74. 74.
    Gervais L, Delamache E (2009) Toward one-step point-of-care immunodiagnostics using capillary microfluidics and PDMS substrates. Lab Chip 9:3330CrossRefGoogle Scholar
  75. 75.
    Yeo W, Liu S, Chung J, Liu Y, Lee K (2009) Rapid detection of mycobacterium tuberculosis cells by using microtip-based immunoassay. Anal Bioanal Chem 393:1593CrossRefGoogle Scholar
  76. 76.
    Henares TG, Funano S, Terabe S, Mizutani F, Sekizawa R, Hisamoto H (2007) Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immuno-reaction functions. Anal Chim Acta 589:173CrossRefGoogle Scholar
  77. 77.
    Petrou PS, Kakabakos SE, Christofidis I, Argitis P, Misiakos K (2002) Multi-analyte capillary immunosensor for the determination of hormones in human serum samples. Biosens Bioelectron 17:261CrossRefGoogle Scholar
  78. 78.
    Oroskar AA. Development applications for membrane-bottom microwell plates. Available via DIALOG http://www.bioon.com/biochip/papers/011.html. Access 8 Feb 2010
  79. 79.
    Direct Industries. Microplates. Available via DIALOG http://www.directindustry.com/industrial-manufacturer/microplate-73845.html. Access 8 Feb 2010
  80. 80.
    Nikolelis DP, Siontorou CG, Andreou VG, Viras KG, Krull UJ (2005) Bilayer lipid membranes as electrochemical detectors for flow injection immunoanalysis. Electroanal 7:1082CrossRefGoogle Scholar
  81. 81.
    Lin J, Yan F, Hu X, Ju H (2004) Chemiluminescent immunosensor for CA 19-9 based on antigen immobilization on a cross-linked chitosan membrane. J Immunol Methods 291:165CrossRefGoogle Scholar
  82. 82.
    Tang J, Li J, Kang J, Zhong L, Zhang Y (2009) Preliminary studies of application of eggshell membrane as immobilization platform in sandwich immunoassay. Sens Actuators B 140:200CrossRefGoogle Scholar
  83. 83.
    Yang D, Liu X, Jin Y, Zhu Y, Zeng D, Jiang X, Ma H (2009) Electrospinning of poly(demethylsiloxane)/poly(methyl methacrylate) nanofibrous membrance: fabrication and application in protein microarrays. Biomacromolecules 10:3335CrossRefGoogle Scholar
  84. 84.
    Liu Y, Yang D, Yu T, Jiang X (2009) Incorporation of electrospun nanofibrous PVDF membrances into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. Electrophoreis 30:3269CrossRefGoogle Scholar
  85. 85.
    Kim J, Gonzalez-Martin A (2009) Nanopore membrane-based electrochemical immunoassay. J Solid State Electrochem 13:1037CrossRefGoogle Scholar
  86. 86.
    Phillips KS, Dong Y, Carter D, Cheng Q (2005) Stable and fluid ethylphosphocholine membrances in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters. Anal Chem 77:2960CrossRefGoogle Scholar
  87. 87.
    Herzog G, Raj J, Arrigan DWM (2009) Immobilisation of antibody on microporous silicon membranes. Microchim Acta 166:349CrossRefGoogle Scholar
  88. 88.
    Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Anal Chim Acta 399:99CrossRefGoogle Scholar
  89. 89.
    van Lieshout RML, van Domburg T, Saalmink M, Verbeek R, Wimberger-Friedl R, van Dieijen-Visser P, Punyadeera C (2009) Three-dimensional flow—through protein platform. Anal Chem 81:5165CrossRefGoogle Scholar
  90. 90.
    Wang X, Tao G, Meng Y (2009) Double-layer nanogold and poly(amidoamine) dendrimer-functionalized PVC membrance electrode for enhanced electrochemical immunoassay of total prostate specific antigen. Electroanal 21:2109CrossRefGoogle Scholar
  91. 91.
    Nguyen BTT, Koh G, Lim K, Chua AJS, Ng MML, Toh C (2009) Membrane-based electrochemical nanobiosensor for the detection of virus. Anal Chem 81:7226CrossRefGoogle Scholar
  92. 92.
    Tudorache M, Emnèus J (2005) Selective immuno-supported liquid membrane (ISLM) extraction enrichment and analysis of 2, 4, 6-trichlorophenol. J Membr Sci 256:143Google Scholar
  93. 93.
    Thordarson E, Jnsson J, Emnus J (2000) Immunologic trapping in supported liquid membrane extraction. Anal Chem 72:5280CrossRefGoogle Scholar
  94. 94.
    Lönnberg M, Carlsson J (2000) Membrane assisted isoform immunoassay. A rapid method for the separation and determination of protein isoforms in an integrated immunoassay. J Immunol Methods 246:25CrossRefGoogle Scholar
  95. 95.
    Qavi AJ, Washburn AL, Byeon J, Bailey RC (2009) Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 394:121CrossRefGoogle Scholar
  96. 96.
    Wan J, Wang X, Li J, Liu W, Xu M, Liu L, Xu J, Wang H, Gao H (2009) A rapid method for detection of PrP by surface plasmon resonance (SPR). Arch Virol 154:1901CrossRefGoogle Scholar
  97. 97.
    Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 81:9499CrossRefGoogle Scholar
  98. 98.
    Lee S, Mayer KM, Hafner JH (2009) Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 81:4450CrossRefGoogle Scholar
  99. 99.
    Tsai W, Pai PR (2009) Surface plasmon resonance-based immunosensor with oriented immobilized antibody fragments on a mixed self-assembled monolayer for the determination of staphylococcal enterotoxin B. Microchim Acta 166:115CrossRefGoogle Scholar
  100. 100.
    Huang H, He C, Zeng Y, Xia X, Yu X, Yi P, Cheng Z (2009) A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron 24:2255CrossRefGoogle Scholar
  101. 101.
    Taylor JD, Linman MJ, Wilkop T, Chen Q (2009) Regenerable tethered bilayer lipid membrance arrays for multiplex label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging. Anal Chem 81:1146CrossRefGoogle Scholar
  102. 102.
    Zhu H, Dale PS, Caldwell CW, Fan X (2009) Rapid and label-free detection of breast cancer biomarker CA 15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal Chem 81:9858CrossRefGoogle Scholar
  103. 103.
    Kanazawa KK, Gordon JG (1985) The oscillation frequency of a quartz resonator in contact with a liquid. Anal Chim Acta 175:99CrossRefGoogle Scholar
  104. 104.
    Kielczynski P (2004) The analog of the Kanazawa-Gordon formula for cylindrical resonators. IEEE T Ultrason FERR 51:1367CrossRefGoogle Scholar
  105. 105.
    Liu Y, Wang C, Hsiung K (2001) Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Anal Biochem 299:130CrossRefGoogle Scholar
  106. 106.
    Uttenthaler E, Kößlinger C, Drost S (1998) Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosens Bioelectron 13:1279CrossRefGoogle Scholar
  107. 107.
    Wang H, Li D, Wu Z, Shen G, Yu R (2004) A reusable piezo-immunosensor with amplified sensitivity for ceruloplasmin based on plasma-polymerized film. Talanta 62:201Google Scholar
  108. 108.
    Liu Y, Wang C, Hsiung K, Huang C (2003) Evaluation and application of conducting polymer entrapment on quartz crystal microbalance in flow injection immunoassay. Biosens Bioelectron 18:937CrossRefGoogle Scholar
  109. 109.
    Alvarez SD, Li C, Chiag CE, Schuller IK, Sailore MJ (2009) A label-free porous alumina interferometric immunosensor. ACS Nano 3:3301CrossRefGoogle Scholar
  110. 110.
    Ray K, Szmacinski H, Akowicz JR (2009) Enhanced fluorescence of proteins and label-free bioassays using alumina nanostructures. Anal Chem 81:6049CrossRefGoogle Scholar
  111. 111.
    Cash KJ, Ricci F, Plaxco KW (2009) A general electrochemical method for label-free screening of protein-small molecule interactions. Chem Commun 41:6222CrossRefGoogle Scholar
  112. 112.
    Ding C, Zhang Q, Zhang S (2009) An electrochemical immunoassay for protein based on bio barcode method. Biosens Bioelectron 24:2434CrossRefGoogle Scholar
  113. 113.
    Limbut W, Loyprasert S, Thammakhet C, Thavarungkul P, Tuantranont A, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Kanatharana P (2007) Microfluidic conductometric bioreactor. Biosens Bioelectron 22:3064CrossRefGoogle Scholar
  114. 114.
    Tuantranont A, Lomas T, Maturos T, Wisitsora-at A, Thavarungkul P, Kanatharana P, Limbut W, Loyprasert S (2006) Development of low-cost microfluidic systems for lab-on-chip biosensor applications. NanoBiotech 2:143CrossRefGoogle Scholar
  115. 115.
    Teeparuksapun K, Kanatharana P, Limbut W, Thammakhet C, Asawatreratanakul P, Mattiasson B, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Disposable electrodes for capacitive immunosensor. Electroanal 21:1066CrossRefGoogle Scholar
  116. 116.
    Numnuam A, Kanatharana P, Mattiasson B, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Capacitive biosensor for quantification of trace amounts of DNA. Biosens Bioelectron 24:2559CrossRefGoogle Scholar
  117. 117.
    Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid. Biosens Bioelectron 22:233CrossRefGoogle Scholar
  118. 118.
    Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P (2007) Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosens Bioelectron 23:688CrossRefGoogle Scholar
  119. 119.
    Sakata T, Ihara M, Makino I, Miyahara Y, Ueda H (2009) Open sandwich-based immuno-transistor for label-free and noncompetitive detection of low molecular weight antigen. Anal Chem 81:7532CrossRefGoogle Scholar
  120. 120.
    Warsinke A, Benkert A, Scheller FW (2000) Electrochemical immunoassays. Fresenius J Anal Chem 366:622CrossRefGoogle Scholar
  121. 121.
    Lai G, Yan F, Ju H (2009) Dual signal amplification of glucose oxidase functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730CrossRefGoogle Scholar
  122. 122.
    Liu Y, Gyurcsanyi RE, Jagerszki G, DeNuzzio JD, Lindner E (2009) Microfabricated amperometric cells for multicomponent analysis. Electroanal 21:1944CrossRefGoogle Scholar
  123. 123.
    Park J, Kim Y, Nam H, Choi M, Jung S, Song G, Kim Y (2009) A multiple drugs of abuse test or saliva specimen on a single lab-on-a-film-chip using electrochemical immunoassay. Natotech Conference & Expo 2009: An interdisciplinary Integrative Forum on Nanotechnology, Biotechnology and Microtechnology, May 3–7, 2009, CRC Press, pp 168–171Google Scholar
  124. 124.
    Marchese RD, Puchalski D, Miller P, Antonello J, Hammond O, Green T, Rubinstein LJ, Caulfield MJ, Sikkema D (2009) Optimization and validation of a multiplex, electrochemiluminescence-based detection assay for the quantitation of immunoglobulin G serotype-specific antipneumococcal antibodies in human serum. Clin Vaccine Immunol 16:387CrossRefGoogle Scholar
  125. 125.
    Yan F, Wu J, Tan F, Yan Y, Ju H (2009) A rapid and simple method for ultrasensitive electrochemical immunoassay of protein by an electric field-driven strategy. Anal Chim Acta 644:36CrossRefGoogle Scholar
  126. 126.
    Gao Q, Ma Y, Cheng Z, Wang W, Yang X (2003) Flow injection electrochemical enzyme immunoassay based on the use of an immunoelectrode strip integrated immunosorbent layer and a screen-printed carbon electrode. Anal Chim Acta 448:61CrossRefGoogle Scholar
  127. 127.
    Killard AJ, Zhang S, Zhao H, John R, Iwuoha EI, Smyth MR (1999) Development of an electrochemical flow injection immunoassay (FIIA) for the real-time monitoring of biospecific interactions. Anal Chim Acta 400:109CrossRefGoogle Scholar
  128. 128.
    Chen Z, Fang C, Wang H, He J, Deng Z (2009) A disposable electrochemical immunofiltration test strip for rapid detection of α-fetoprotein. Sens Actuators B: Chem 141:436CrossRefGoogle Scholar
  129. 129.
    Viswanathan S, Rani C, Vijay Anand A, Ho JA (2009) Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocence liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 24:1984CrossRefGoogle Scholar
  130. 130.
    Marquette CA, Blum LJ (1998) Electrochemiluminescence of luminal for 2, 4-D optical immunosensing in a flow injection analysis system. Sens Actuators B 51:100CrossRefGoogle Scholar
  131. 131.
    Wu J, Tang J, Dai Z, Yan F, Ju H, Murr NE (2006) A disposable electrochemical immunosensor for flow injection immunoassay for carcinoembryonic antigen. Biosens Bioelectron 22:102CrossRefGoogle Scholar
  132. 132.
    Liang W, Yi W, Li S, Ruo Y, Chen A, Chen S, Xiang G, Hu C (2009) A novel, label-free immunosensor for the detection of fetoprotein using functionalised gold nanoparticles. Clin Biochem 42:1524CrossRefGoogle Scholar
  133. 133.
    Wang L, Jia X, Zhou Y, Xie Q, Yao S (2010) Sandwich-type amperometric immunosensor for human immunoglobulin G using antibody-adsorbed Au/SiO2 nanoparticle. Microchim acta 168:245CrossRefGoogle Scholar
  134. 134.
    Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta. doi: 10.1007/s00604-010-0309-1 Google Scholar
  135. 135.
    Giroud F, Gorgy K, Gondran C, Cosnier S, Pinacho DG, Macro MP, Sanchez-Baeza FJ (2009) Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin. Anal Chem 81:8405CrossRefGoogle Scholar
  136. 136.
    Elnemma EM, Hamada MA (1997) Plastic membrance electrodes for the potentiometric determination of codeine in pharmaceutical preparations. Microchim Acta 126:147CrossRefGoogle Scholar
  137. 137.
    Chen C, Liu D, Wu Z, Luo Q, Shen G, Yu R (2009) Sensitive label-free electrochemical immunoassay by lectrocatalytic amplification. Electrochem Commun 11:1869CrossRefGoogle Scholar
  138. 138.
    Wang X, Tao G, Meng Y (2009) Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum. Microchim Acta 167:147CrossRefGoogle Scholar
  139. 139.
    Chua J, Chee R, Agarwal A, Wong S, Zhang G (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor compatible silicon nanowire sensor arrays. Anal Chem 81:6266CrossRefGoogle Scholar
  140. 140.
    Tsujita Y, Maehashi K, Matsumoto K, Chikae M, Takamura Y, Tamiya E (2009) Microfluidic and label-free multi-immunosensors based on carbon nanotube microelectrodes. Jap J Appl Phys 48:06FJ02/1CrossRefGoogle Scholar
  141. 141.
    Yang Q, Qu Y, Bo Y, Wen Y, Huang S (2010) Biosensor for atrazin based on aligned carbon nanotubes modified with glucose oxidase. Microchim Acta 168:197CrossRefGoogle Scholar
  142. 142.
    Umehara S, Karhanek M, Davis RW, Pourmand N (2009) Label-free biosensing with functionalized nanopipette probes. Proc Natl Acad Sci USA 106:4611CrossRefGoogle Scholar
  143. 143.
    Fu X, Wang J, Li N, Wang L, Pu L (2009) Label-free electrochemical immunoassay of carcinoembryonic antigen in human serum using magnetic nanorods as sensing probes. Microchim Acta 165:437CrossRefGoogle Scholar
  144. 144.
    Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1CrossRefGoogle Scholar
  145. 145.
    Wilson R, Kremeskötter J, Schiffrin DJ (1996) Electrochemiluminescence detection of glucose oxidase as a model for flow injection immunoassays. Biosens Bioelectron 11:805CrossRefGoogle Scholar
  146. 146.
    Wilson R, Barker MH, Schiffrin DJ, Abuknesha R (1997) Electrochemiluminescence flow injection immunoassay for atrazine. Biosens Bioelectron 12:277CrossRefGoogle Scholar
  147. 147.
    Wilson R, Clavering C, Hutchinson A (2003) Electrochemiluminescence enzyme immunoassay for TNT. Analyst 128:480CrossRefGoogle Scholar
  148. 148.
    Liang KZ, Mu WJ (2006) Flow injection immunobioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes. Anal Chim Acta 580:128CrossRefGoogle Scholar
  149. 149.
    Dai Z, Serban S, Ju H, Murr NE (2007) Layer-by-layer hydroxymethyl ferrocence modified sensor for one-step flow/stop-flow injection amperometric immunoassay of α-fetoprotein. Biosens Bioelectron 22:1700CrossRefGoogle Scholar
  150. 150.
    Mizutani F (2008) Biosensors utilizing monolayers on electrode surfaces. Sens Actuators B 130:14CrossRefGoogle Scholar
  151. 151.
    Leach AW, Wheeler AR, Zare RN (2003) Flow injection analysis in a microfluidic format. Anal Chem 75:967CrossRefGoogle Scholar
  152. 152.
    Huh D, Bahng J, Ling Y, Wei H, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369CrossRefGoogle Scholar
  153. 153.
    Girardo S, Cecchini M, Beltram F, Cingolani R, Pisignano D (2008) Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels. Lab Chip 8:1557CrossRefGoogle Scholar
  154. 154.
    Zeng L, Palmer J (2005) Enhancement of micromixing tees using ultrasound energy. ACS Symposium Series 914:322CrossRefGoogle Scholar
  155. 155.
    Takeuchi M, Nakano K (2005) Ultrasonic micromanipulation of liquid droplets for a lab-on-a-chip. Proc-IEEE Ultrason Symp 3:1518Google Scholar
  156. 156.
    Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A Phys A86:135CrossRefGoogle Scholar
  157. 157.
    Lee D, Yoon HC, Ko JS (2004) Fabrication and characterization of abidirectional valveless peristaltic micropump and its application to a flow-type immunoanalysis. Sens Actuators B 103:409CrossRefGoogle Scholar
  158. 158.
    Jang L, Kan W (2007) Peristaltic piezoelectric micropump system or biomedical applications. Biomed Microdevices 9:619CrossRefGoogle Scholar
  159. 159.
    Tanaka K, Dau VT, Sakamoto R, Dinh TX, Dao DV, Sugiyama S (2008) Fabrication and basic characterization of a piezoelectric valveless micro jet pump. Jpn J Appl Phys 47:8615CrossRefGoogle Scholar
  160. 160.
    Ma HK, Hou BR, Wu HY, Lin CY, Gao JJ, Kou MC (2008) Development and application of a diaphragm micro-pump with piezoelectric device. Microsyst Technol 14:1001CrossRefGoogle Scholar
  161. 161.
    Juncker D, Schmid H, Drechsier U, Wolf H, Wolf M, Michel B, De Rooif N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139CrossRefGoogle Scholar
  162. 162.
    Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119CrossRefGoogle Scholar
  163. 163.
    Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnosis. Clin Chim Acta 321:1CrossRefGoogle Scholar
  164. 164.
    Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648CrossRefGoogle Scholar
  165. 165.
    Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly(demethylsiloxane) microfluidic devices for gold nanoparticles-based DNA analysis. Lab Chip 4:181CrossRefGoogle Scholar
  166. 166.
    Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6:236CrossRefGoogle Scholar
  167. 167.
    Hosokawa K, Omata M, Maeda M (2007) Immunoassay on a power-free microchip with laminar flow assisted dendritic amplification. Anal Chem 79:6000CrossRefGoogle Scholar
  168. 168.
    Haswell SJ (1997) Development and operating characteristics of micro flow injection analysis systems based on electro osmotic flow. Analyst 122:1RCrossRefGoogle Scholar
  169. 169.
    Nashida N, Satoh W, Fukuda J, Suzuki H (2007) Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions. Biosens Bioelectron 22:3167CrossRefGoogle Scholar
  170. 170.
    Hartshome H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B Chem B99:592CrossRefGoogle Scholar
  171. 171.
    Thermo Scientific, Pierce Protein Research Products, Cross linking and protein modification. Available via DIALOG http://www.piercenet.com. Access 8 Feb 2010
  172. 172.
    Zeng Q, Zhang Y, Song K, Kong X, Aalders MCG, Zhang H (2009) Enhancement of sensitivity and specificity of the fluoroimmunoassay of hepatitis B virus surface antigen through “flexible” coupling between quantum dots and antibody. Talanta 80:307CrossRefGoogle Scholar
  173. 173.
    Barat B, Sirk SJ, McCabe KE, Li J, Lepin EJ, Remenyi R, Koh AL, Olafsen T, Gambhir SS, Weiss S, Wu AM (2009) Cys-diabody quantum dot conjugates (ImmunoQdots) for cancer marker detection. Bioconjugate Chem 20:1474CrossRefGoogle Scholar
  174. 174.
    Heegaard PMH, Pedersen HG, Jensen AL, Boas U (2009) A robust quantitative solid phase immunoassay for the acute phase protein C-reactive protein (CRP) based on cytidine 5′-diphosphocholine coupled dendrimers. J Immunol Methods 343:112CrossRefGoogle Scholar
  175. 175.
    Singh P, Onodera T, Mizuta Y, Matsumoto K, Miura N, Toko K (2009) Dendrimer modified biochip for detection of 2, 4, 6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sens Actuators B Chem 137:403CrossRefGoogle Scholar
  176. 176.
    Fu X (2009) Sandwich type electrochemical immunoassay for carbohydrate antigen-125 using multifunctional magnetic beads with ferrocenyl-tethered dendrimer as label. Chem Lett 38:656CrossRefGoogle Scholar
  177. 177.
    Stofik M, Stryhal Z, Maly J (2009) Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors. Biosens Bioelectron 24:1918CrossRefGoogle Scholar
  178. 178.
    Liao J, Tang D (2009) High-throughput miniaturized immunoassay for human interleukin-6 using electrochemical sandwich-type enzyme immunosensors. Curr Pharm Anal 5:164CrossRefGoogle Scholar
  179. 179.
    Rios L, Garcia AA (2008) Dendrimer based non-competitive fluoroimmunoassay for analysis of cortisol. React Funct Polym 68:307CrossRefGoogle Scholar
  180. 180.
    Patolsky F, Lichtenstein A, Willner I (2000) Electrochemical transduction of liposome-amplified DNA sensing. Angew Chem Int Edit 39:940CrossRefGoogle Scholar
  181. 181.
    Patolsky F, Ranjit KT, Lichtenstein A, Willner I (2000) Dendritic amplification of DNA analysis by oligonucleotide functionalized Au-nanoparticles. Chem Commun 12:1025CrossRefGoogle Scholar
  182. 182.
    Chen H, Jiang J, Huang Y, Deng T, Li J, Shen G, Yu R (2006) An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex. Sens Actuators B 117:211CrossRefGoogle Scholar
  183. 183.
    Lucarelli F, Marrazza G, Mascini M (2006) Dendritic-like streptavidin/alkaline phosphatase nanoarchitectures for amplified electrochemical sensing of DNA sequences. Langmuir 22:4305CrossRefGoogle Scholar
  184. 184.
    Pei R, Cheng Z, Wang E, Yang X (2001) Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16:355CrossRefGoogle Scholar
  185. 185.
    Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K, Wang J (2002) Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients. Am J Pathol 160:1269Google Scholar
  186. 186.
    Bauer CG, Eremenko AV, Ehrentreich-Förster E, Bier FF, Makower A, Halsall HB, Heineman WR, Scheller FW (1996) Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2, 4-dichlorophenoxyacetic acid. Anal Chem 68:2453CrossRefGoogle Scholar
  187. 187.
    Nister C, Rose A, Wollenberger U, Pfeiffer D, Emnèus J (2002) A glucose dehydrogenase biosensor as an additional signal amplification step in an enzyme-flow immunoassay. Analyst 127:1076CrossRefGoogle Scholar
  188. 188.
    Dzantiev BB, Yazynina EV, Zherdev AV, Plekhanova YV, Reshetilov AN, Chang SC, McNeil CJ (2004) Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay. Sens Actuators B 98:254CrossRefGoogle Scholar
  189. 189.
    Rongen HAH, Bult A, van Bennekom WP (1997) Liposomes and immunoassays. J Immunol Methods 204:105CrossRefGoogle Scholar
  190. 190.
    Wu TG, Bellama JM, Durst RA (1989) Potentiometric enzyme-amplified flow injection analysis detection system: behavior of free and liposome-released peroxidase. Anal Lett 22:1107Google Scholar
  191. 191.
    Lee M, Durst RA, Wong RB (1997) Comparison of liposome amplification and fluorophor detection in flow-injection immunoanalyses. Anal Chim Acta 354:23CrossRefGoogle Scholar
  192. 192.
    Ho JA, Wu L, Huang M, Lin Y, Baeumner AJ, Durst RA (2007) Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin. Anal Chem 79:246CrossRefGoogle Scholar
  193. 193.
    Ho JA, Huang M (2005) Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system. Anal Chem 77:3431CrossRefGoogle Scholar
  194. 194.
    Ho JA, Durst RA (2003) Detection of fumonisin B1; comparison of flow-injection liposome immunoanalysis with high-performance liquid chromatography. Anal Biochem 312:7CrossRefGoogle Scholar
  195. 195.
    Trau D, Yang W, Seydack M, Caruso F, Yu N, Renneberg R (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480CrossRefGoogle Scholar
  196. 196.
    Chan CP, Bruemmel Y, Seydack M, Sin K, Wong L, Merisko-Liversidge E, Trau D, Ronneberg R (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638CrossRefGoogle Scholar
  197. 197.
    Bruemmel Y, Chan CP, Ronneberg R, Thuenemann A, Seydack M (2004) On the influence of different surfaces in nano- and submicrometer particle based fluorescence immunoassays. Langmuir 20:9371CrossRefGoogle Scholar
  198. 198.
    Sin K, Chan CP, Pang T, Seydack M, Ronneberg R (2006) A highly sensitive fluorescent immunoassay based on avidin-labeled nanocrystals. Anal Bioanal Chem 384:638CrossRefGoogle Scholar
  199. 199.
    Chan CP, Tzang LC, Sin K, Ji S, Cheung K, Tam T, Yang MM, Renneberg R, Seydack M (2007) Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7CrossRefGoogle Scholar
  200. 200.
    Chan CP, Haeussler M, Tang BZ, Dong Y, Sin K, Mak W, Trau D, Seydack M, Renneberg R (2004) Silole nanocrystals as novel biolabels. J Immunol Methods 295:111CrossRefGoogle Scholar
  201. 201.
    Ou L, Liu S, Chu X, Shen G, Yu R (2009) DNA Encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal Chem 81:9664CrossRefGoogle Scholar
  202. 202.
    Feng L, Wang L, Hu Z, Tian Y, Xian Y, Jin L (2009) Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry. Microchim Acta 164:49CrossRefGoogle Scholar
  203. 203.
    Fernández-Argüelles MT, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2008) Simple bio-conjugation of polymer-coated quantum dots with antibodies for fluorescence-based immunoassays. Analyst 133:444CrossRefGoogle Scholar
  204. 204.
    Jin L, Yu D, Liu Y, Zhao X, Zhou J (2008) The application of CdTe@SiO2 particles in immunoassay. Talanta 76:1053CrossRefGoogle Scholar
  205. 205.
    Li F, Zhang Z, Peng J, Cui Z, Pang D, Li K, Wei H, Zhou Y, Wen J, Zhang X (2009) Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5:718CrossRefGoogle Scholar
  206. 206.
    Sweeny E, Ward TH, Gray N, Womack C, Jayson G, Hughes A, Dive C, Byers R (2008) Quantitative multiplexed quantum dot immunohistochemistry. Biochem Biophys Res Commun 374:181CrossRefGoogle Scholar
  207. 207.
    Zhang Q, Zhu L, Feng H, Ang S, Chau FS, Liu W (2006) Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoasssay and RNA hybridization. Anal Chim Acta 556:171CrossRefGoogle Scholar
  208. 208.
    Peng C, Li Z, Zhu Y, Chen W, Yuan Y, Liu L, Li Q, Xu D, Qiao R, Wang L, Zhu S, Jin Z, Xu C (2009) Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosens Bioelectron 24:3657CrossRefGoogle Scholar
  209. 209.
    Geissler D, Hildebrandt N, Charbonniere LJ, Ziessel RF, Loehmannsroeben H (2009) Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays. Proceedings of SPIE 7189 (Colloidal Quantum Dots for Biomedical Applications IV):71890 L/1Google Scholar
  210. 210.
    Geissler D, Butlin NG, Hill D, Loehmannsroeben H, Hildebrandt N (2009) Multiplexed diagnostics and spectroscopic ruler applications with terbium to quantum dots FRET. Proceedings of SPIE 7368 (Clinical and Biomedical Spectroscopy):73680P/1Google Scholar
  211. 211.
    Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, Wong J, Gage C, Furmaga WB, Redding SW, McDevitt JT (2009) Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot biconjugate labels. Biosens Bioelectron 24:3622CrossRefGoogle Scholar
  212. 212.
    Wang Z, Lu M, Wang X, Yin R, Song Y, Le XC, Wang H (2009) Quantum dots enhanced ultrasensitive detection of DNA aducts. Anal Chem 81:10285CrossRefGoogle Scholar
  213. 213.
    Kapoor V, Hakim FT, Rehman N, Gress RE, Telford WG (2009) Quantum dots thermal stability improves simultaneous phenotype-specific telomeric length measurement by FISH-flow cytometry. J Immunol Methods 344:6CrossRefGoogle Scholar
  214. 214.
    Ferrari BC, Bergquist PL (2007) Quantum dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned. Cytometry A 71A:265CrossRefGoogle Scholar
  215. 215.
    Ki HA, Naoghare PK, Oh B, Choi J, Song J (2009) Nondestructive quantum dot-based intracellular serotonin imaging in intact cells. Anal Biochem 388:23CrossRefGoogle Scholar
  216. 216.
    Zhang B, Cheng J, Li D, Liu X, Ma G, Chang J (2008) A novel method to make hydrophilic quantum dots and its application on biodetection. Mat Sci Eng B 149:87CrossRefGoogle Scholar
  217. 217.
    Wang C, Ma Q, Dou W, Kanwai S, Wang G, Yuan P, Su X (2009) Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta 77:1358CrossRefGoogle Scholar
  218. 218.
    Triulzi RC, Micic M, Orbulescu J, Giordani S, Mueller B, Leblanc RM (2008) Antibody-gold quantum dot-PAMAM dendrimer complex as an immunoglobulin immunoassay. Analyst 133:667CrossRefGoogle Scholar
  219. 219.
    Yong K, Ding H, Roy I, Law W, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:502CrossRefGoogle Scholar
  220. 220.
    Hennig S, van de Linde S, Heilemann M, Sauer M (2009) Quantum dot triexciton imaging with three-dimensional subdiffraction resolution. Nano Lett 9:2466CrossRefGoogle Scholar
  221. 221.
    Lucas LJ, Chesler JN, Yoon J (2007) Lab-on-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 23:675CrossRefGoogle Scholar
  222. 222.
    Wang H, Wang J, Timchalk C, Lin Y (2008) Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal Chem 80:8477CrossRefGoogle Scholar
  223. 223.
    Yu H, Lee J, Kim S, Nguyen G, Kim IS (2009) Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin. Anal Bioanal Chem 394:2173CrossRefGoogle Scholar
  224. 224.
    Ho JA, Lin Y, Wang L, Hwang K, Chou P (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem 81:1340CrossRefGoogle Scholar
  225. 225.
    Jie G, Li L, Chen C, Xuan J, Zhu J (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352CrossRefGoogle Scholar
  226. 226.
    Wang G, Yu P, Xu J, Chen H (2009) A label-free photoelectrochemical immunosensor based on wafer-soluble CdS quantum dots. J Phys Chem C 113:11142CrossRefGoogle Scholar
  227. 227.
    Murakoshi M, Lida K, Kumano S, Wada H (2009) Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots. Pflug Arch 457:885CrossRefGoogle Scholar
  228. 228.
    Ansell RJ (2004) Molecularly imprinted polymers in pseudoimmunoassay. J Chromatogr B 804:151CrossRefGoogle Scholar
  229. 229.
    Tai D, Lin C, Wu T, Chen L (2005) Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem 77:5140CrossRefGoogle Scholar
  230. 230.
    Surugiu I, Svitel J, Ye L, Haupt K, Danielsson B (2001) Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody. Anal Chem 73:4388CrossRefGoogle Scholar
  231. 231.
    Yang H, Zhu Q, Qu H, Chen X, Ding M, Xu J (2002) Flow injection fluorescence immunoassay for gentamicin using sol-gel-derived mesoporous biomaterial. Anal Biochem 308:71CrossRefGoogle Scholar
  232. 232.
    Gupta R, Kumar A (2008) Molecular imprinting in sol-gel matrix. Biotech Adv 26:533CrossRefGoogle Scholar
  233. 233.
    Yu J, Zhang C, Dai P, Ge S (2009) Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol-gel film. Anal Chim Acta 65:209CrossRefGoogle Scholar
  234. 234.
    Kramer PM, Franke A, Zherdev AV, Yazynina EV, Dzantiev BB (2005) Comparison of two express immunotechniques with polyelectrolyte carriers, ELISA and FIIAA, for the analysis of atrazine. Talanta 65:324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Innovation in Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations