Advertisement

Microchimica Acta

, Volume 170, Issue 3–4, pp 193–214 | Cite as

Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review)

  • Fabiana Arduini
  • Aziz Amine
  • Danila Moscone
  • Giuseppe Palleschi
Review Article

Abstract

The present review reports the research carried out during last 9 years on biosensors based on cholinesterase inhibition for nerve agents, organophosphorus and carbammic insecticides, and aflatoxin B1 detection. Relative applications in environmental and food areas are also reported. Special attention is paid to the optimization of parameters such as enzyme immobilization, substrate concentration, and incubation time in the case of reversible inhibition by aflatoxin B1 or irreversible inhibition by organophosphorus and carbamic insecticides, and nerve agents in order to optimize and improve the analytical performances of the biosensor. Evaluation of selectivity of the system is also discussed.

Keywords

Biosensors Inhibition Insecticides Cholinesterase Nerve agents Aflatoxin 

References

  1. 1.
    Guilbault GG, Kramer DN, Cannon PL (1962) Electrochemical determination of organophosphorus compounds. Anal Chem 34:1437–1439CrossRefGoogle Scholar
  2. 2.
    Danzer T, Schwedt G (1996) Chemometric methods for the development of a biosensor system and the evaluation of inhibition studies with solutions and mixtures of pesticides and heavy metals Part 1. Development of an enzyme electrodes system for pesticide and heavy metal screening using selected chemometric methods. Anal Chim Acta 318:275–286CrossRefGoogle Scholar
  3. 3.
    Evtyugin GA, Stoikov II, Budnikov GK, Stoikova EE (2003) A cholinesterase sensor based on a graphite electrode modified with 1, 3-disubstituted calixarenes. J Anal Chem 58:1151–1156CrossRefGoogle Scholar
  4. 4.
    Andreescu S, Avramescu A, Bala C, Magearu V, Marty JL (2002) Detection of organophosphorus insecticides with immobilized acetylcholinesterase-comparative study of two enzyme sensors. Anal Bioanal Chem 374:39–45CrossRefGoogle Scholar
  5. 5.
    Solna R, Dock E, Christenson A, Winther-Nielsen CC, Emneus J, Ruzgas T, Skladal P (2005) Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases. Anal Chim Acta 528:9–19CrossRefGoogle Scholar
  6. 6.
    Del Carlo M, Mascini M, Pepe A, Diletti G, Compagnone D (2004) Screening of food samples for carbamate and organophosphate pesticides using electrochemical bioassay. Food Chem 84:651–656CrossRefGoogle Scholar
  7. 7.
    Albareda-Sirvent M, Merkoçi A, Alegret S (2001) Thick-film biosensors for pesticides produced by screen-printing of graphite-epoxy composite and biocomposite pastes. Sens Actuators B 79:48–57CrossRefGoogle Scholar
  8. 8.
    Pritchard J, Law K, Vakurov A, Millner P, Higson SPJ (2004) Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides. Biosens Bioelectron 20:765–772CrossRefGoogle Scholar
  9. 9.
    Villatte F, Schulze H, Schmid RD, Bachmann TT (2002) A disposable acetylcholinesterase-based electrode biosensor to detect anatoxin-a (s) in water. Anal Bioanal Chem 372:322–326CrossRefGoogle Scholar
  10. 10.
    Devic E, Li D, Dauta A, Henriksen P, Codd GA, Marty JL, Fournier D (2002) Detection of anatoxin-a(s) in environmental samples of cyanobacteria by using a biosensor with engineered acetylcholinesterases. Appl Environ Microbiol 68:4102–4106CrossRefGoogle Scholar
  11. 11.
    Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2004) Enzyme biosensor for tomatine detection in tomatoes. Anal Lett 37:611–1624CrossRefGoogle Scholar
  12. 12.
    Arkhypova VN, Dzyadevych SV, Soldatkin SP, Korpan YI, El’skaya AV, Gravoueille JM, Martelet C, Jaffrezic-Renault N (2004) Application of enzyme field effect transistor for fast detection of total glycoalkaloids content in potatoes. Sens Actuators 103:416–422CrossRefGoogle Scholar
  13. 13.
    Lenigk R, Lam E, Lai A, Wang H, Han Y, Carlier P, Renneberg R (2000) Enzyme biosensor for studying therapeutics of Alzheimer’s disease. Biosens Bioelectron 15:541–547CrossRefGoogle Scholar
  14. 14.
    White BJ, Legako JA, Harmon HJ (2002) Reagent-less detection of a competitive inhibitor of immobilised acetylcholinesterase. Biosens Bioelectron 17:361–366CrossRefGoogle Scholar
  15. 15.
    Du D, Chen S, Cai J, Song D (2007) Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite. J Electroanal Chem 611:60–66CrossRefGoogle Scholar
  16. 16.
    Gogol EV, Evtugyn GA, Marty JL, Budnikov HC, Winter VG (2000) Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta 53:379–389CrossRefGoogle Scholar
  17. 17.
    Ovalle M, Stoyceva M, Zlatev R, Valdez B, Velkova Z (2008) Electrochemical study on the type of immobilized acetylcholinesterase inhibition by sodium fluoride. Electrochim Acta 53:6344–6350CrossRefGoogle Scholar
  18. 18.
    Halamek J, Makower A, Knosche K, Skladal P, Scheller FW (2005) Piezoelectric affinity sensors for cocaine and cholinesterase inhibitors. Talanta 65:337–342CrossRefGoogle Scholar
  19. 19.
    Teller C, Halamek J, Zeravik J, Stocklein WF, Scheller FW (2008) Development of a bifunctional sensor using haptenised acetylcholinesterase and application for the detection of cocaine and organophosphate. Biosen Bioelectron 15:111–117CrossRefGoogle Scholar
  20. 20.
    Yang Y, Yang M, Wang H, Tang L, Shen G, Yu R (2004) Inhibition biosensor for determination of nicotine. Anal Chim Acta 509:151–157CrossRefGoogle Scholar
  21. 21.
    Mitsubayashi K, Nakayama K, Taniguchi M, Saito H, Otsuka K, Kudo H (2006) Bioelectronic sniffer for nicotine using enzyme inhibition. Anal Chim Acta 573–574:69–76CrossRefGoogle Scholar
  22. 22.
    Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15CrossRefGoogle Scholar
  23. 23.
    Pohanka M, Jun D, Kalasz H, Kuca K (2009) Cholinesterase biosensor construction-A review. Protein Pept Lett 15:795–798CrossRefGoogle Scholar
  24. 24.
    Pohanka M, Musilek K, Kuca K (2009) Progress of biosensors based on cholinesterases inhibition. Curr Med Chem 16:1790–1798CrossRefGoogle Scholar
  25. 25.
    Pohanka M (2009) Cholinesterase based amperometric biosensors for assay of anticholinergic compounds. Interdisc Toxicol 2:52–54CrossRefGoogle Scholar
  26. 26.
    Manco G, Nucci R, Febbraio F (2009) Use of esterase for the detection of chemical neurotoxic agents. Protein Pept Lett 16:1225–1243CrossRefGoogle Scholar
  27. 27.
    Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors:a review. Sensors 9:4034–4055CrossRefGoogle Scholar
  28. 28.
    Gordon MA, Chan SL, Trevor AJ (1976) Active-site determinations on forms of mammalian brain and eel acetylcholinesterase. Biochem J 157:69–76Google Scholar
  29. 29.
    Sussman L, Harel H, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879CrossRefGoogle Scholar
  30. 30.
    Dougherty A, Stauffer DA (1990) Acetylcholine binding by a synthetic receptor. Implications for biological recognition. Science 250:1558–1560CrossRefGoogle Scholar
  31. 31.
    Hansmann T, Sanson B, Stojan J, Weik M, Marty JL, Fournier D (2009) Kinetic insight into the mechanism of cholinesterase inhibition by aflatoxin B1 to develop biosensors. Biosens Bioelectron 24:2119–2124CrossRefGoogle Scholar
  32. 32.
    Arduini F, Errico I, Amine A, Micheli L, Palleschi G, Moscone D (2007) Enzymatic spectrophotometric method for aflatoxin B detection based on acetylcholinesterase inhibition. Anal Chem 79:3409–3415CrossRefGoogle Scholar
  33. 33.
    Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensor for food safety and environmental monitoring. Biosens Bioelectron 18:1405–1423CrossRefGoogle Scholar
  34. 34.
    Darvesh S, Darvesh KV, McDonald RS, Mataija D, Walsh R, Mothana S, Lockridge O, Martin E (2008) Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 51:4200–4212CrossRefGoogle Scholar
  35. 35.
    Giacobini E (2003) Butyrylcholinesterase:its function and inhibitors. Informa Healthcare, LondonGoogle Scholar
  36. 36.
    European Union., European Union. Legislation, http://europa.eu.int/eurlx/en/indx.html
  37. 37.
    Agüera A, Contreras M, Fernandez-Alba AR (1993) Gas chromatographic analysis of organophosphorus pesticides of horticultural concern. Journal Chromatogr A 655:293–300CrossRefGoogle Scholar
  38. 38.
    Lacorte S, Molina C, Barceló D (1993) Screening of organophosphorus pesticides in environmental matrices by various gas chromatographic techniques. Anal Chim Acta 281:71–84CrossRefGoogle Scholar
  39. 39.
    Lehotay SJ (2000) Analysis of pesticide residues in mixed fruit and vegetable extracts by direct sample introduction/gas chromatography/tandem mass spectrometry:chromatographic pesticide residue analysis. J AOAC Intl 83:680–697Google Scholar
  40. 40.
    Brauch HJ (2006) Gas chromatography for determination of pesticides in aquatic systems. Acta Hydroch Hydrob 21:84–88CrossRefGoogle Scholar
  41. 41.
    (1998) Standard methods for examination of water and wastewater 20th ed. American Public Health Association, WashingtonGoogle Scholar
  42. 42.
    Liska I, Slobodnik J (1996) Comparison of gas and liquid chromatography for analysing polar pesticides in water samples. J Cromatogr A 733:235–258CrossRefGoogle Scholar
  43. 43.
    EPA Method 8141 A, 2000. US Environmental Protection AgencyGoogle Scholar
  44. 44.
    Jin S, Xu Z, Chen J, Liang X, Wu Y, Qian X (2004) Determination of organophosphate and carbamate pesticides on enzyme inhibition using a pH-sensitive fluorescence probe. Anal Chim Acta 523:117–123CrossRefGoogle Scholar
  45. 45.
    Reybier K, Ziari S, Jaffrezic-Renault N, Fahys B (2002) The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors. Talanta 56:1015–1020CrossRefGoogle Scholar
  46. 46.
    Pohanka M, Jun D, Kuca K (2008) Amperometric biosensor for real time assays of organophosphates. Sensors 8:5303–5312CrossRefGoogle Scholar
  47. 47.
    Campanella L, Lelo D, Martini E, Tomassetti M (2007) Organophosphorus and carbamate pesticides analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase opee and application to natural waters. Anal Chim acta 587:22–32CrossRefGoogle Scholar
  48. 48.
    Nikolelis DP, Simantiraki MG, Siontorou CG, Toth K (2005) Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Anal Chim Acta 537:169–177CrossRefGoogle Scholar
  49. 49.
    Ivanov AN, Evtyugin GA, Brainina KZ, Budnikov GK, Stenina LE (2002) Cholinesterase sensors based on thick-film graphite electrodes for the flow-injection determination of organophosphorus pesticides. Anal Chem 37:1224–1230Google Scholar
  50. 50.
    Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Detection of carbammic and organophosphorus pesticides in water samples using cholinesterase biosensor based on Prussian Blue modified screen printed electrode. Anal Chim Acta 580:155–162CrossRefGoogle Scholar
  51. 51.
    Solna R, Sapelnikova S, Skladal P, Winther-Nielsen M, Carlsson C, Emneus J, Ruzgas T (2005) Multienzyme electrochemical array sensor for the determination of phenols and pesticides. Talanta 65:349–357CrossRefGoogle Scholar
  52. 52.
    Evtugyn GA, Ivanov AN, Gogol EV, Marty JL, Budnikov HC (1999) Amperometric flow-through biosensor for the determination of cholinesterase inhibitors. Anal Chim Acta 385:13–21CrossRefGoogle Scholar
  53. 53.
    Jaganathan L, Boopathy R (2000) Distinct effect of benzalkonium chloride on the esterase and aryl acylamidase activities of butyrylcholinesterase. Bioorg Chem 28:242–251CrossRefGoogle Scholar
  54. 54.
    Guilhermino L, Barros P, Silva Amadeu MC, Soares MVM (1998) Should the use of inhibition of cholinesterases as a specific biomarker for organophosphate and carbamate pesticides be questioned. Biomarker 3:157–163CrossRefGoogle Scholar
  55. 55.
    Arduini F, Ricci F, Amine A, Moscone D, Palleschi G (2007) Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal Bioanal Chem 388:1049–1057CrossRefGoogle Scholar
  56. 56.
    Fennouh S, Casimiri V, Burstein C (1997) Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with choline oxidase biosensor. Biosens Bioelectron 12:97–104CrossRefGoogle Scholar
  57. 57.
    Cremisini C, Di Sario S, Mela J, Pilloton R, Palleschi G (1995) Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase biosensor. Anal Chim Acta 311:273–280CrossRefGoogle Scholar
  58. 58.
    Ciucu AA, Negulescu C, Baldwin RP (2003) Detection of pesticides using an amperometric biosensor based on ferophthalocyanine modified carbon paste electrode immobilised bienzymatic system. Biosens Bioelectron 18:303–310CrossRefGoogle Scholar
  59. 59.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18:165–174CrossRefGoogle Scholar
  60. 60.
    Lin YH, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanal 16:145–149CrossRefGoogle Scholar
  61. 61.
    Zhang J, Luo A, Liu P, Wei S, Wang G, Wei S (2009) Detection of organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization. Anal Sci 25:511–515CrossRefGoogle Scholar
  62. 62.
    Soldatkin AP, Arkhypova VN, Dzyadevych SV, El’skaya AV, Gravoueille JM, Jaffrezic-Renault N, Martelet C (2005) Analysis of the potato glycoalkaloids by using enzyme biosensor based on pH-ISFETs. Talanta 66:28–33CrossRefGoogle Scholar
  63. 63.
    Dzyadevych SV, Arkhypova VN, Martelet M, Jaffrezic-Renault N, Chovelon JM, El’skaya AV, Soldatkin AP (2006) Potentiometric biosensors based on ISFETs and immobilised cholinesterases. Int J Appl Electromagnet Mech 23:249–255Google Scholar
  64. 64.
    Sneidarkova M, Svobodova L, Evtugyn G, Budnikov H, Karyakin A, Nikolesis DP, Hianik T (2004) Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline A comparative reserch. Anal Chim Acta 514:79–88CrossRefGoogle Scholar
  65. 65.
    Ivanov AN, Evtugyn GA, Lukachova LV, Karyakina EE, Budnikov HC, Kiseleva SG, Orlov AV, Karpacheva GP, Karyakin AA (2003) New polyaniline-based potentiometric biosensor for pesticides detection. IEEE Sensors J 3:333–340CrossRefGoogle Scholar
  66. 66.
    Ivanov AN, Lukachova LV, Evtugyn GA, Karyakina EE, Kiseleva SG, Budnikov HC, Orlov AV, Karpacheva GP, Karyakin AA (2002) Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochem 55:75–77CrossRefGoogle Scholar
  67. 67.
    Mourzina IG, Yoshinobu T, Ermolenko YE, Vaslov YG, Schoning MC, Iwasaki H (2004) Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim Acta 144:41–50CrossRefGoogle Scholar
  68. 68.
    Ding J, Qin W (2009) Current driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing. J Am Chem Soc 131:14640–14641CrossRefGoogle Scholar
  69. 69.
    Chouteau C, Dzydevych SV, Durrieu C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21:273–281CrossRefGoogle Scholar
  70. 70.
    Dzydevych SV, Shulga AA, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C (2005) Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanal 6:752–758CrossRefGoogle Scholar
  71. 71.
    Pohanka M, Dobes P, Dritinova L, Kuca K (2009) Nerve Agents assay using cholinesterase based biosensor. Electroanal 21:1177–1182CrossRefGoogle Scholar
  72. 72.
    Hart JP, Hartley IC (1994) Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically modified with cobalt phthalocyanine: studies towards a pesticide sensor. Analyst 119:259–263CrossRefGoogle Scholar
  73. 73.
    Ricci F, Arduini F, Amine A, Moscone D, Palleschi P (2004) Characterisation of Prussian Blue modified screen printed electrodes for thiol detection. J Electroanal Chem 563:229–237CrossRefGoogle Scholar
  74. 74.
    Hernandez S, Palchetti I, Mascini M (2000) Determination of anticholinesterase activity for pesticides monitoring using a thiocholine sensor. Int J Environ Anal Chem 78:263–278CrossRefGoogle Scholar
  75. 75.
    Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi P, Ricci F, Arduini F, Amine A, Moscone D, Palleschi P (2009) Electrocatalytic oxidation of thiocholine at chemically modified cobalthexacyanoferrate screen-printed electrodes. J Electroanal Chem 626:66–74CrossRefGoogle Scholar
  76. 76.
    Neufeld T, Eshkenazi I, Cohen E, Rishpon J (2000) A micro flow injection electrochemical biosensor for organophosphorus pesticides. Biosens Bioelectron 15:323–329CrossRefGoogle Scholar
  77. 77.
    Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanal 17:54–58CrossRefGoogle Scholar
  78. 78.
    Wang J, Timchalk LY (2008) Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environ Sci Technol 42:2688–2693CrossRefGoogle Scholar
  79. 79.
    Weetall HH, Mishra NN, Mahfouz A, Rogers KR (2004) An approach for screening cholinesterase inhibitors in drinking water using an immobilised enzyme assay. Anal Lett 37:1297–1305CrossRefGoogle Scholar
  80. 80.
    Choi JW, KimYK LIH, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting acetyl cholinesterase/viologen hetero Langmuir-Blodgett film. Biosens Bioelectron 16:937–943CrossRefGoogle Scholar
  81. 81.
    Trettnak W, Reininger F, Zinterl E, Wolfbeis OS (1993) Fiber-optic remote detection of pesticides and related inhibitors of the enzyme acetylcholine esterase. Sens Actuators B 11:87–93CrossRefGoogle Scholar
  82. 82.
    Tsai HC, Doong RA (2000) Optimisation of sol gel based fibre optic cholinesterase biosensor for the determination of organophosphorus pesticides. Water Sci Technol 42:283–290Google Scholar
  83. 83.
    Doong RA, Tsai HC (2001) Immobilization and characterization of sol-gel-encapsulated acetylcholinesterase fiber-optic biosensor. Anal Chim Acta 434:239–246CrossRefGoogle Scholar
  84. 84.
    Danet AF, Bucur B, Cheregi MC, Badea M, Serban S (2003) Spectrophotometric determination of organophosphoric insecticides in FIA system based on AChE inhibition. Anal Lett 36:59–73CrossRefGoogle Scholar
  85. 85.
    Danet AF, Badea M, Marty JL, Aboul-Enein HY (2000) Flow analysis for determination of paraoxon with use of immobilized acetylcholinesterase reactor and new type of chemiluminescent reaction. Biopolymers 57:37–42CrossRefGoogle Scholar
  86. 86.
    Zeng H, Jiang Y, Xie G, Yu J (2007) Novel piezoelectric DDVP sensor based on self-assembly methodNovel piezoelectric DDVP sensor based on self-assembly method. Anal Lett 40:67–76CrossRefGoogle Scholar
  87. 87.
    Halamek J, Teller C, Zeravik J, Fournier D, Makower A, Scheller FW (2006) Characterization of binding of cholinesterases to surface immobilized ligands. Anal Lett 39:1491–1502CrossRefGoogle Scholar
  88. 88.
    Makower A, Halamek J, Sladal P, Kernchen F, Scheller FW (2003) New principle of a direct real-time monitoring of the interaction of cholinesterase and its inhibitors by piezoelectric biosensor. Biosens Bioelectron 18:1329–1337CrossRefGoogle Scholar
  89. 89.
    Kim H, Park IS, Kim DK (2007) High-sensitivity detection for model organophosphorus and carbamate pesticides with quartz crystal microbalance-precipation sensor. Biosens Bioelectron 22:1593–1599CrossRefGoogle Scholar
  90. 90.
    Karaousos NG, Aoubadi S, Way AS, Reddy SM (2002) Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal Chim Acta 469:189–196CrossRefGoogle Scholar
  91. 91.
    Huang X, Tu H, Zhu D, Zhang A (2009) A gold nanoparticles labelling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta 78:1036–1042CrossRefGoogle Scholar
  92. 92.
    Lin TJ, Huang KT, Liu CY (2006) Determination of organophoshorous pesticides by a novel biosensor based on localised surface plasmon resonance. Biosens Bioelectron 22:513–518CrossRefGoogle Scholar
  93. 93.
    Pohanka M, Kuka K, Jun D (2007) Amperometric biosensor for pesticide methamidophos assay. Acta Medica (Hradec Kralove) 50:239–241Google Scholar
  94. 94.
    Bonnet C, Andreescu S, Marty JL (2003) Adsorption: and easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal Chim Acta 481:209–211CrossRefGoogle Scholar
  95. 95.
    Zou MQ, Yang R, Wang DN, Li JF, Jin QH (2006) A novel immobilised cholinesterase for on-site screening of organophosphate and carbamate compounds. Pestic Biochem Physiol 86:162–166CrossRefGoogle Scholar
  96. 96.
    Gong J, Liu T, Song D, ZHAng X, Zhang L (2009) One step fabrication of three-dimensional porous calcium carbonate-chitosan composite film as the immobilisation matrix of acetylcholinesterase and its biosensor on pesticides. Electrochem Comm 11:1873–1876CrossRefGoogle Scholar
  97. 97.
    Sotiropoulou S, Chaniotakis NA (2005) Lowering the detection limit of the acethylcholinesterase biosensor using a nanoporous carbon matrix. Anal Chim Acta 530:199–204CrossRefGoogle Scholar
  98. 98.
    Ivanov AN, Evtugyn GA, Gyurcsanyi RE, Toth K, Budnikov HC (2000) Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination. Anal Chim Acta 404:55–65CrossRefGoogle Scholar
  99. 99.
    Zejli H, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta 77:217–221CrossRefGoogle Scholar
  100. 100.
    Pandey PC, Upadhyay S, Pathak HC, Pandey CMD, Tiwari I (2000) Acetylthiocholine/acetylcholine and thiocholine/choline electrochemical biosensors/sensors based on an organically modified sol-gel glass enzyme reactor and graphite paste electrode. Sens Actuators B 62:109–116CrossRefGoogle Scholar
  101. 101.
    Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–618CrossRefGoogle Scholar
  102. 102.
    Sinha R, Ganesana M, Andreescu S, Stanciu L (2010) Ache biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal Chim Acta 661:195–199CrossRefGoogle Scholar
  103. 103.
    Luckarift HR, Greenwald R, Bergin MH, Spain JC, Johnson GR (2007) Biosensor system for continuous monitoring of organophosphate aerosols. Biosens Bioelectron 23:400–406CrossRefGoogle Scholar
  104. 104.
    Andreescu S, Barthelmebs L, Marty JL (2002) Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal Chim Acta 464:171–180CrossRefGoogle Scholar
  105. 105.
    Anitha K, Venkata Mohan S, Jayarama Reddy S (2004) Development of acetylcholinesterase silica sol-gel immobilised biosensor-an application towards oxydemeton methyl detection. Biosens Bioelectron 20:848–856CrossRefGoogle Scholar
  106. 106.
    Du D, Chen S, Cai J, Zhang A (2008) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor on colloidal gold nanoparticles modified sol-gel interface. Talanta 74:766–772CrossRefGoogle Scholar
  107. 107.
    Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843CrossRefGoogle Scholar
  108. 108.
    Du D, Wang M, Cai J, Qin Y, Zhang A (2009) One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sens Actuator B, in pressGoogle Scholar
  109. 109.
    Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens Actuators 127:531–535CrossRefGoogle Scholar
  110. 110.
    Vakurov A, Simson CE, Daly CL, Gibson TD, Millner PA (2004) Acetylcholinesterase-based biosensor electrodes for organophosphate pesticides detection I Modification of carbon surface for immobilisation of acetylcholinesterase. Biosens Bioelectron 20:1118–1125Google Scholar
  111. 111.
    Curulli A, Drugulescu S, Cremisini C, Palleschi G (2001) Bienzyme amperometric probes for choline and choline esters assembled with non conducting electrosynthesized polymers. Electroanal 13:236–242CrossRefGoogle Scholar
  112. 112.
    Suprun E, Budnikov V, Evtugyn GA, Brainina KZ (2004) Bi-enzyme sensor based on thick-film carbon electrode modified with electropolymerized tyramine. Bioelectrochem 63:281–284CrossRefGoogle Scholar
  113. 113.
    Waibel M, Schulze H, Huber N, Bachmann TT (2006) Screen-printed bienzymatic sensor based on sol-gel immobilised Nippostrongylus brasiliensis acetylcholinesterase and a cytocrome P450 BM-3 (CYP102-A1) mutant. Biosens Bioelectron 21:1132–1140CrossRefGoogle Scholar
  114. 114.
    Arkhypova VN, Martelet C, Jaffrezic-Renault N, Chovelon JM, Elskaya AV, Soldtkin AP (2004) Potentiometric biosensor based on ISFETs and immobilised cholinesterases. Electroanal 16:1873–1882CrossRefGoogle Scholar
  115. 115.
    Arkhypova VN, Dzyadevych SV, Soldatkin SP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2003) Development and optimisation of biosensors based on pH-sensitive field effect transistor an cholinesterases for sensitive detection solaneceous glycoalkaloids. Biosens Bioelectron 18:1047–1053CrossRefGoogle Scholar
  116. 116.
    Gogol EV, Evtugyn GA, Marty JL, Budnikov H, Winter VG (2000) Amperometric biosensors based on nafion coated screen printed electrodes for the determination of cholinesterase inhibitors. Talanta 53:379–389CrossRefGoogle Scholar
  117. 117.
    Arkhypova VN, Dzyadevych SV, Jaffrezic-Renault N, Martelet C, Soldatkin SP (2008) Biosensor for assay of glycoalkaloids in potato tubers. Appl Biochem Biotechnol 44:314–318Google Scholar
  118. 118.
    Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2005) Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal Bional Chem 383:597–604CrossRefGoogle Scholar
  119. 119.
    Ivanov I, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2003) Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbammic pesticides. Anal Bioanal Chem 377:624–631CrossRefGoogle Scholar
  120. 120.
    Laschi S, Ogonczyk D, Palchetti I, Mascini M (2007) Evaluation of pesticides-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. Enzyme Microb Technol 40:485–489CrossRefGoogle Scholar
  121. 121.
    Bucur B, Andreescu S, Marty JL (2004) Affinity methods to immobilise acetylcholinesterase for manufacturing biosensors. Anal Lett 37:1571–1588CrossRefGoogle Scholar
  122. 122.
    Bucur B, Danet AF, Marty JL (2004) Versatile method of cholinesterase immobilisation via affinity bonds using concanavalin A applied to the construction of a screen-printed electrode. Biosens Bioelectron 20:217–225CrossRefGoogle Scholar
  123. 123.
    Andreescu S, Magearu V, Lougarre A, Fournier D, Marty JL (2001) Immobilization of enzymes on screen printed sensors via an histidine tail. Application to the detection of pesticides using modified cholinesterase. Anal Lett 34:529–540CrossRefGoogle Scholar
  124. 124.
    Andreescu S, Fournier D, Marty JL (2003) Development of highly sensitive sensor based on bioengineered acetylcholinesterase immobilized by affinity method. Anal Lett 36:1865–1885CrossRefGoogle Scholar
  125. 125.
    Andreescu S, Bucur B, Marty JL (2006) Affinity Immobilization of Tagged Enzymes. In: Guisan JM (ed) Immobilization of enzymes and cells, 2nd edn. Humana Press, LondonGoogle Scholar
  126. 126.
    Instaboulie G, Andreescu S, Marty JL, Noguer T (2007) Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens Bioelectron 23:506–512CrossRefGoogle Scholar
  127. 127.
    Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tuneable perform for biosensor applications. Biosens Bioelectron 17:1–12CrossRefGoogle Scholar
  128. 128.
    Somerset VS, Klink MJ, Sekota MMC, Baker PGL, Iwuoha EI (2006) Polyaniline-Mercaptobenzothiazole biosensor for organophosphate and carbamate pesticides. Anal Lett 39:1683–1698CrossRefGoogle Scholar
  129. 129.
    Somerset S, Baker P, Iwuoha EI (2009) Mercaptobenzothiazole on-gold organic phase biosensor systems: 1.Enhanced organophosphate pesticide determination. J Environ Sci Health Part B 44:164–178CrossRefGoogle Scholar
  130. 130.
    PedrosaVA CJ, Machado SAS, Bertotti M (2008) Determination of parathion and carbaryl pesticides in water and food samples using a self assembled monolayer/acetylcholinesterase electrochemical biosensor. Sensors 8:4600–4610CrossRefGoogle Scholar
  131. 131.
    PedrosaVA CJ, Sergio AS, Machado SAS, Freire RS, Bertotti M (2007) Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for determination of pesticides. Electroanal 19:1415–1420CrossRefGoogle Scholar
  132. 132.
    Du D, Chen W, Cai J, ZhangJ TuH, Zhang A (2009) Acetylcholinesterase biosensor based on gold nanoparticles and cysteamine self assembled monolayer for determination of monocrotophos. J Nanosci Nanotechnol 9:2368–2373CrossRefGoogle Scholar
  133. 133.
    Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772–2777CrossRefGoogle Scholar
  134. 134.
    McAteer K, Simpson CE, Gibson TD, Gueguen S, Boujtita M, El Murr N (1999) Proposed model for shelf-life prediction of stabilised commercial enzyme-based systems and biosensors. J Mol Catal B: Enzym 7:47–56CrossRefGoogle Scholar
  135. 135.
    Drago GA, Gibson T (2001) Enzyme stability. applications and case studies. In: Hofman M, Thonart P (eds) Engineering and manufacturing for biotechnology. Kluwer Academic, London, pp 361–376Google Scholar
  136. 136.
    Gibson TD, Higgins IG, Woodward JR (1992) Stabilization of analytical enzymes using a novel polymer–carbohydrate system and the production of a stabilized, single reagent for alcohol analysis. Analyst 117:1293–1297CrossRefGoogle Scholar
  137. 137.
    Gavalas VG, Gibson TD, Chaniotakis NA (1998) Improved operational stability of biosensors based enzyme-polyelectrolyte complex adsorbed into a porous carbon. Biosens Bioelectron 13:1205–1211CrossRefGoogle Scholar
  138. 138.
    Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA (2005) Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection II Immobilization and stabilization of acetylcholinesterase. Biosens Bioelectron 20:2324–2329CrossRefGoogle Scholar
  139. 139.
    Pohanka M, Jun D, Kuca K (2007) Amperometric biosensor for evaluation of competitive cholinesterase inhibition by the reactivator HI-6. Anal Lett 40:2351–2359CrossRefGoogle Scholar
  140. 140.
    Du D, Huang X, Cai J, Zhang A Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23:285–289.Google Scholar
  141. 141.
    Okazaki S, Nakagawa H, Fukuda K, Asakura S, Kiuchi H, Shigemori T, Takahashi S (2000) Re-activation of an amperometric organophosphate pesticide biosensor by 2-pyridinealdoxime methochloride. Sens Actuators B 66:131–134CrossRefGoogle Scholar
  142. 142.
    Gulla KC, Gouda MD, Thakur MS, Karanth NG (2002) Reactivation of immobilized acetylcholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochim Biophys Acta 1597:133–139Google Scholar
  143. 143.
    Kok FN, Bozoglu F, Hasirci V (2002) Construction of an acethylcholinesterase-choline oxidase biosensor for aldicarb determination. Biosens Bioelectron 17:531–539CrossRefGoogle Scholar
  144. 144.
    Timchalk C, Poet TS, Kousba AA, Campbell JA, Lin Y (2006) Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure: analysis of lead or organophosphate insecticide in saliva. J Toxicol Environ Health part A 67:635–650CrossRefGoogle Scholar
  145. 145.
    Du D, Wang J, Smith JN, Timchalk C, Lin Y (in press) Biomonotoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotubes-enhanced flow-injection amperometric detection. Anal Chem. doi: 10.1021/ac901673a
  146. 146.
    Bajgar J, Fusek J, Bartosova L, Jun D, Kuca K (2006) Evaluation of reactivation test in anaesthetized dogs with experimental intoxication with nerve agents. J appl Toxic 26:439–443CrossRefGoogle Scholar
  147. 147.
    Zhang S, Zhao H, John R (2001) Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors-theoretical and practical consideration. Biosensor Bioelectron 16:1119–1126CrossRefGoogle Scholar
  148. 148.
    Kok FN, Hasirci V (2004) Determination of binary pesticides mixture by an acetylcholinesterase-choline oxidase biosensor. Biosens Bioelectron 19:661–665CrossRefGoogle Scholar
  149. 149.
    Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon JM, Georgiu CA, Martelet Jaffrezic-Renault N (2005) Early-warning electrochemical biosensor system for environmental monitoring based enzyme inhibition. Sens Actuators B 105:81–87CrossRefGoogle Scholar
  150. 150.
    Sotiropoulou S, Fournier D, Chaniotakis NA (2005) Genitically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosens Bioelectron 20:2347–2352CrossRefGoogle Scholar
  151. 151.
    Law K, Higson SPJ (2005) Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens Bioelectron 20:1914–1924CrossRefGoogle Scholar
  152. 152.
    Villatte F, Schulze H, Schmid RD, Bachmann TT (2005) Insecticide detection through protein engineering of Nippostrongylus brasiliensis acetylcholinesterase B. Anal Chem 77:5823–5830CrossRefGoogle Scholar
  153. 153.
    Jeanty G, Wojciechowska A, Marty JL, Trojanowicz M (2002) Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin. Anal Bioanal Chem 373:691–695CrossRefGoogle Scholar
  154. 154.
    Xia S, Wang X, Wang X, Liu Z (2008) Comparative study of sensitivity of acetylcholinesterase in detection of organophosphorus pesticides residues. Int J Food Eng 4:issue 3 article 7Google Scholar
  155. 155.
    Andreescu S, Avramescu A, Bala C, Magearu V, Marty JL (2002) Detection of organophosphorus insecticides with immobilized acetylcholinesterase-comparative study of two enzyme sensors. Anal Bioanal Chem 374:39–45CrossRefGoogle Scholar
  156. 156.
    Crew A, Hart JP, Wedge R, Marty JL, Fournier D (2004) A screen-printed amperometric biosensor array for the detection of organophosphate pesticides based on inhibition of wild type, and mutant acetylcholinesterases, from Drosophila melanogaster. Anal Lett 37:1601–1610CrossRefGoogle Scholar
  157. 157.
    Tumturk H, Sahin F, Demirel G (2007) A new method for immobilisation of acetylcholinesterase. Bioprocess Biosyst Eng 30:141–145CrossRefGoogle Scholar
  158. 158.
    Schulze H, Scherbaum E, Anastassiades M, Vorlovà S, Schmid RD, Bachmann TT (2002) Development, validation, and application for an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food. Biosens Bioelectron 17:1095–1105CrossRefGoogle Scholar
  159. 159.
    Montesinos T, Munguia SP, Valdez F, Marty JL (2001) Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents. Anal Chim Acta 431:231–237CrossRefGoogle Scholar
  160. 160.
    Dondoi MP, Bucur B, Danet AF, Toader CN, Barthelmebs L, Marty JL (2006) Organophosphorus insecticides extraction and heterogeneous oxidation on column for analysis with an acetylcholinesterase (AChE) biosensor. Anal Chim Acta 578:162–169CrossRefGoogle Scholar
  161. 161.
    Andreescu S, Noguer T, Magearu V, Marty JL (2002) Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta 57:169–176CrossRefGoogle Scholar
  162. 162.
    Wilkins E, Carter M, Voss J, Ivnitski D (2000) A quantitative determination of organophosphate pesticides in organic solvents. Electrochem Commun 2:786–790CrossRefGoogle Scholar
  163. 163.
    Somerset VS, Klink MJ, Baker PGL, Iwuoha EI (2007) Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J Environ Sci Health Part B 42:297–304CrossRefGoogle Scholar
  164. 164.
    Arduini F, Ricci F, Bourais I, Amine A, Moscone D, Palleschi P (2005) Extraction and detection of pesticides by cholinesterase inhibition in a two-phase system: a strategy to avoid heavy metal interference. Anal Lett 38:1703–1719CrossRefGoogle Scholar
  165. 165.
    Schulze H, Schmid RD, Bachmann TT (2002) Rapid detection of neurotoxic insecticides in food using disposable acetylcholinesterase-biosensors and simple solvent extraction. Anal Bioanal Chem 372:268–272CrossRefGoogle Scholar
  166. 166.
    Campanella L, De Luca S, Sammartino MP, Tomassetti M (1999) A new organic phase enzyme electrode for the analysis of organophosphorus pesticides and carbamates. Anal Chim Acta 385:59–71CrossRefGoogle Scholar
  167. 167.
    White BJ, Harmon HJ (2005) Enzyme-based detection of Sarin (GB) using planar waveguide absorbance spectroscopy. Sensor Letters 3:36–41CrossRefGoogle Scholar
  168. 168.
    Lee WE, Thompson HG, Hall JG, Bader DE (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens Bioelectron 14:795–804CrossRefGoogle Scholar
  169. 169.
    Upadhyay S, Rama Rao G, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilized of acetylcholinesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection on organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron 25:832–838CrossRefGoogle Scholar
  170. 170.
    Mlsna TE, Cemalovic S, Warburtan M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B 116:192–201CrossRefGoogle Scholar
  171. 171.
    Tomchenko AA, Harmer GP, Marquis BT (2005) Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens Actuators B 108:41–55CrossRefGoogle Scholar
  172. 172.
    Mulchandani A, Pan S, Chen W (1999) Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. Biotechnol Prog 15:130–134CrossRefGoogle Scholar
  173. 173.
    Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B 115:150–157CrossRefGoogle Scholar
  174. 174.
    Mulchandani P, Chen W, Mulchandani A (2001) Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ Sci Technol 35:2562–2565CrossRefGoogle Scholar
  175. 175.
    Joshi KA, Prouza M, Kum M, Wang J, Tang J, Haddon R, Chen W, Mulchandani A (2006) V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal Chem 78:331–336CrossRefGoogle Scholar
  176. 176.
    Andreou VG, Clonis YD (2002) A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol-gel entrapped bromocresol purple for in field use. Biosens Bioelectron 17:61–69CrossRefGoogle Scholar
  177. 177.
    Lee HS, Kim YA, Cho YA, Lee YT (2002) Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosph 46:571–576CrossRefGoogle Scholar
  178. 178.
    Zhao W, Ge PY, Xu JJ, Chen HY (2009) Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor. Environ Sci Technol 43:6724–6729CrossRefGoogle Scholar
  179. 179.
    Shi M, Xu J, Zhang S, Liu B, Kong J (2006) A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system. Talanta 68:1089–1095CrossRefGoogle Scholar
  180. 180.
    Hildebrandt A, Ribas J, Bragos R, Marty JL, Tresànchez M, Lacorte S (2008) Development of a portable biosensor for screening neurotoxic agents in water samples. Talanta 75:1208–1213CrossRefGoogle Scholar
  181. 181.
    Hildebrandt A, Bragòs R, Lancorte S, Marty JL (2008) Performance of a portable biosensor for the analysis for organophosphorus and carbamate insecticides in water and food. Sens Actuators B 133:195–201CrossRefGoogle Scholar
  182. 182.
    Halàmek J, Pribyl J, Makower A, Skaladal P, Scheller FW (2005) Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Anal Bional Chem 382:1904–1911CrossRefGoogle Scholar
  183. 183.
    Collier WA, Clear M, Hart AL (2002) Convenient and rapid detection of pesticides in extracts of sheep wool. Biosens Bioelectron 17:815–819CrossRefGoogle Scholar
  184. 184.
    Bucur B, Fournier D, Danet A, Marty JL (2006) Biosensor based on highly sensitive acetylcholinesterase for enhanced carbamate insecticides detection. Anal Chim Acta 562:115–121CrossRefGoogle Scholar
  185. 185.
    Zhang Y, Muench SB, Schulze H, Perz R, Yang B, Schmid RD, Bachmann TT (2005) Disposable biosensor test for organophosphate and carbamate insecticides in milk. J Agric Food Chem 53:5110–5115CrossRefGoogle Scholar
  186. 186.
    Del Carlo M, Mascini M, Pepe A, Compagnone D, Mascini M (2002) Electrochemical bioassay for the investigation of chlorpyrifos-methyl in vine samples. J Agric Food Chem 50:7206–7210CrossRefGoogle Scholar
  187. 187.
    Boni A, Cremisini C, Magarò E, Tosi M, Vastarella W, Pilloton R (2004) Optimised biosensors based on purified enzymes and engineered yeasts:detection of inhibitors of cholinesterases on grapes. Anal Lett 37:1683–1699CrossRefGoogle Scholar
  188. 188.
    Longobardi F, Solfrizzo M, Compagnone D, Del Carlo M, Visconti A (2005) A Use of electrochemical biosensor and gas chromatography for determination of dichlorvos in wheat. J Agric Food Chem 53:9389–9394CrossRefGoogle Scholar
  189. 189.
    Del Carlo M, Pepe A, Mascini M, De Gregorio M, Visconti A, Compagnone D (2005) Determining pirimiphos-methyl in durum wheat samples using an acetylcholinesterase inhibition assay. Anal Bioanal Chem 381:1367–1372CrossRefGoogle Scholar
  190. 190.
    Del Carlo M, Pepe A, De Gregorio M, Mascini M, Marty JL, Fournier D, Visconti A, Compagnone D (2006) An electrochemical bioassay for dichlorvos analysis in durum wheat samples. J Food Prot 69:1406–1411Google Scholar
  191. 191.
    Valdes-Ramirez G, Fournier D, Ramirez-Silva MT, Marty JL (2008) Sensitive amperometric biosensor for dichlorvos quantification:application to detection of residues on apple skin. Talanta 74:741–746CrossRefGoogle Scholar
  192. 192.
    Du D, Wang M, Cai J, Tao Y, Tu H, Zhang A (2008) Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing. Analyst 133:1790–1795CrossRefGoogle Scholar
  193. 193.
    No HY, Kim YA, Lee YT, Lee HS (2007) Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal Chim Acta 594:37–43CrossRefGoogle Scholar
  194. 194.
    Xavier MP, Vallejo B, Marazuela MD, Moreno-Bondi MC, Baldini F, Falai A (2000) Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red. Biosens Bioelectron 14:895–905CrossRefGoogle Scholar
  195. 195.
    Pogacnik L, Franko M (2003) Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosens Bioelectron 18:1–9CrossRefGoogle Scholar
  196. 196.
    Caetano J, Machado SAS (2008) Determination of carbaryl in tomato ‘‘in natura’’ using an amperometric biosensor based on the inhibition of acetylcholinesterase activity. Sens Actuators B 129:40–46CrossRefGoogle Scholar
  197. 197.
    Arduini F, Amine A, Moscone D, Palleschi G (2009) Reversible enzyme inhibition based biosensors: applications and analytical improvement through diagnostic inhibition. Anal Lett 42:1258–1293CrossRefGoogle Scholar
  198. 198.
    Cole KE, Jones TW, Lipsky MM, Trump BF, Hsu IC (1988) In vitro binding of aflatoxin B1 and 2-acetylaminofluorene to rat, mouse and human hepatocyte DNA: the relationship of DNA binding to carcinogenicity. Carcinogenesis 9:711–716CrossRefGoogle Scholar
  199. 199.
    Delmulle BS, De Saeger SMDG, Siba L, Barna-Vetro I, Van Peteghem CH (2005) Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. J Agric Food Chem 53:3364–3368CrossRefGoogle Scholar
  200. 200.
    IARC (1993) In mycotoxins. International Agency for Research on cancer, LyonGoogle Scholar
  201. 201.
    Blesa J, Soriano JM, Moltò JC, Marin R, Manes J (2003) Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography. J Chromatogr A 1011:49–54CrossRefGoogle Scholar
  202. 202.
    Ammida NHS, Micheli L, Palleschi G (2004) Electrochemical immunosensor for determination of aflatoxin B1 in barley. Anal Chim Acta 520:159–164CrossRefGoogle Scholar
  203. 203.
    Cometa MF, Lorenzini P, Fortuna S, Volpe MT, Meneguz A, Palmery M (2005) In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology 206:125–135CrossRefGoogle Scholar
  204. 204.
    Pohanka M, Musilek K, Kuca K (in press) Evaluation of aflatoxin B1-acetylcholinesterase dissociation kinetic using the amperometric biosensor technology: prospect for toxicity mechanism. Protein Pept LettGoogle Scholar
  205. 205.
    Pohanka M, Kuca K, Jun D (2008) Aflatoxin assay using an amperometric sensor strip and acetylcholinesterase as recognition element. Sensor Letter 6:1–4Google Scholar
  206. 206.
    Arduini F, Micheli L, Amine A, Marty JL, Moscone D, Palleschi G (2006) Sviluppo di un biosensore per la determinazione dell’AFB1 In: XXII National Congress of the Italian Chemical Society, Firenze, p 11.Google Scholar
  207. 207.
    Ben Rejeb I, Arduini F, Arvinte A, Amine A, Gargouri M, Micheli L, Bala C, Moscone M, Palleschi G (2009) Development of a bio-electrochemical assay for AFB detection in olive oil. Biosens Bioelectron 24:1962–1968CrossRefGoogle Scholar
  208. 208.
    Vastarella W, Rosa V, Cremisini C, Della Seta L, Montereali MR, Pilloton R (2007) Preliminary study on the electrochemical biosensors for the determination of total cholinesterase inhibitors in strawberries. Int J Environ Anal Chem 87:689–699CrossRefGoogle Scholar
  209. 209.
    Luque De Castro MD, Herrera MC (2003) Enzyme inhibition-based biosensor and biosensing systems: questionable analytical devices. Biosens Bioelectron 18:279–294CrossRefGoogle Scholar
  210. 210.
    Dzydevych SV, Chovelon JM (2002) A comparative photodegradation studies of methyl parathion by using Lumistox and conductometric biosensor technique. Mater Sci Eng C 21:55–60CrossRefGoogle Scholar
  211. 211.
    Istamboulie G, Cortina-Puig M, Marty JL, Noguer T (2009) The use of artificial neural networks for the selective detection of two organophosphate insecticides: chlorpyrifos and chlorfenvinfos. Talanta 79:507–511CrossRefGoogle Scholar
  212. 212.
    Bechmann TT, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 15:193–201CrossRefGoogle Scholar
  213. 213.
    Ramirez GV, Gutierrez M, Del Valle M, Ramirez-Silva MT, Fournier D, Marty JL (2009) Automated resolution of dichlorvos and methylparaoxon pesticides mixtures employing a flow injection system with an inhibition electronic. Biosens Bioelectron 24:1103–1108CrossRefGoogle Scholar
  214. 214.
    Schulze H, Vorlova S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18:201–209CrossRefGoogle Scholar
  215. 215.
    Korpan YI, Raushel FM, Nazarenko EA, Soldatkin AP, Jaffrezic-Renault N, Martelet C (2006) Sensitivity and Specificity improvement of an ion sensitive filed effect transistors-based biosensor for patato glycoalkaloids detection. J Agric Food Chem 54:707–712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fabiana Arduini
    • 1
    • 2
  • Aziz Amine
    • 3
  • Danila Moscone
    • 1
    • 2
  • Giuseppe Palleschi
    • 1
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma Tor VergataRomeItaly
  2. 2.Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”RomeItaly
  3. 3.Faculté des Sciences et TechniquesMohammadiaMorocco

Personalised recommendations