Microchimica Acta

, Volume 169, Issue 1–2, pp 73–78 | Cite as

Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy

  • Shifeng Li
  • Shanjun Tao
  • Fenfen Wang
  • Jianguo Hong
  • Xianwen Wei*
Original Paper

Abstract

The chemiluminescence (CL) of luminol–H2O2 system is strongly enhanced on addition of nanoparticles composed of a gold/silver alloy (ratio 5:4). The effect is attributed to a catalytically enhanced decomposition of H2O2 to produce reactive oxygen species. A reaction mechanism is proposed. Organic compounds containing hydroxy, amino, or thiol groups (such as amino acids, dopamine, pyrocatechol) can inhibit the CL signal of the system. It is concluded that the system has a large potential in terms of the determination of such compounds.

Keywords

Flow injection Chemiluminescence Luminol Au–Ag alloy nanoparticles 

Supplementary material

604_2010_302_MOESM1_ESM.doc (656 kb)
ESM 1(DOC 655 kb)

References

  1. 1.
    Juan AO, Francisco JB, Manuel C, Fernando DR (2004) Application of lanthanide-sensitised chemiluminescence to the determination of levofloxacin, moxifloxacin and trovafloxacin in tablets. Microchim Acta 144:207–213CrossRefGoogle Scholar
  2. 2.
    Yakunin AF, Hallenbeck PC (1998) A luminol/iodophenol chemiluminescent detection system for western immunoblots. Anal Biochem 258:146–149CrossRefGoogle Scholar
  3. 3.
    Adam W, Kazakov DV, Kazakov VP (2005) Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev 105:3371–3387CrossRefGoogle Scholar
  4. 4.
    Han HY, He ZK, Zeng YE (2006) Chemiluminescence method for the determination of glutathione in human serum using the Ru(phen)3 2+–KMnO4 system. Microchim Acta 155:431–434CrossRefGoogle Scholar
  5. 5.
    Imdadullah FT, Kumamaru T (1991) Chemiluminescence from the reaction of chloroauric acid with luminol in reverse micelles. Anal Chem 63:2348–2352CrossRefGoogle Scholar
  6. 6.
    Zhang LH, Teshima N, Hasebe T, Kurihara M, Kawashima T (1999) Flow-injection determination of trace amounts of dopamine by chemiluminescence detection. Talanta 50:677–683CrossRefGoogle Scholar
  7. 7.
    Easton PM, Simmonds AC, Rakishev A, Egorov AM, Candeias LP (1996) Quantitative model of the enhancement of peroxidase-induced luminol luminescence. J Am Chem Soc 118:6619–6624CrossRefGoogle Scholar
  8. 8.
    Godlewska-Żyłkiewicz B, Malejko J, Leśniewska B, Kojło A (2008) Assessment of immobilized yeast for the separation and determination of platinum in environmental samples by flow-injection chemiluminescence and electrothermal atomic absorption spectrometry. Microchim Acta 163:327–334CrossRefGoogle Scholar
  9. 9.
    Sanchez FG, Diaz AN, Garcia JAG (1997) Relation between the structure of some heterocyclic derivatives and other compounds, and their effects as enhancers or inhibitors of the luminol–H2O2–horseradish peroxidase chemiluminescence. J Photochem Photobiol A 105:11–14CrossRefGoogle Scholar
  10. 10.
    Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554CrossRefGoogle Scholar
  11. 11.
    Lin JM, Shan X, Hanaoka S, Yamada M (2001) Luminol chemiluminescence in unbuffered solutions with cobalt(II)-ethanolamine complex immobilized on resin as catalyst and its application to analysis. Anal Chem 73:5043–5051CrossRefGoogle Scholar
  12. 12.
    Schneider E (1941) Chemiluminescence of luminol catalyzed by iron complex salts of chlorophyll derivatives. J Am Chem Soc 63:1477–1478CrossRefGoogle Scholar
  13. 13.
    Badocco D, Pastore P, Favaro G, Macca C (2007) Effect of eluent composition and pH and chemiluminescent reagent pH on ion chromatographic selectivity and luminol-based chemiluminescence detection of Co2+, Mn2+ and Fe2+ at trace levels. Talanta 72:249–255CrossRefGoogle Scholar
  14. 14.
    Alpeeva IS, Sakharov IY (2005) Soybean Peroxidase-catalyzed oxidation of luminol by hydrogen peroxide. J Agric Food Chem 53:5784–5788CrossRefGoogle Scholar
  15. 15.
    Ikariyama Y, Suzuki S, Aizawa M (1982) Luminescence immunoassay of human serum albumin with hemin as labeling catalyst. Anal Chem 54:1126–1129CrossRefGoogle Scholar
  16. 16.
    Motsenbocker M, Ichimori Y, Kondo K (1993) Metal porphyrin chemiluminescence reaction and application to immunoassay. Anal Chem 65:397–402CrossRefGoogle Scholar
  17. 17.
    Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4:1683–1687CrossRefGoogle Scholar
  18. 18.
    Li SF, Zhang XM, Yao ZJ, Yu R, Huang F, Wei XW (2009) Enhanced chemiluminescence of the rhodamine 6G-cerium(IV) system by Au–Ag alloy nanoparticles. J Phys Chem C 113:15586–15592CrossRefGoogle Scholar
  19. 19.
    Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272CrossRefGoogle Scholar
  20. 20.
    Li SF, Zhang XM, Du WX, Ni YH, Wei XW (2009) Chemiluminescence reactions of luminol system catalyzed by ZnO nanoparticles. J Phys Chem C 113:1046–1051CrossRefGoogle Scholar
  21. 21.
    Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticles-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329CrossRefGoogle Scholar
  22. 22.
    Li SF, Li XZ, Xu J, Wei XW (2008) Flow-injection chemiluminescence determination of polyphenols using luminol–NaIO4–gold nanoparticles system. Talanta 75:32–37CrossRefGoogle Scholar
  23. 23.
    Duan CF, Cui H, Zhang ZF, Liu B, Guo JZ, Wang W (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566CrossRefGoogle Scholar
  24. 24.
    Li SF, Li XZ, Zhang YQ, Huang F, Wang FF, Wei XW (2009) Enhanced chemiluminescence of the luminol-KIO4 system by ZnS nanoparticles. Microchim Acta 167:103–108CrossRefGoogle Scholar
  25. 25.
    Guo JZ, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111:12254–12259CrossRefGoogle Scholar
  26. 26.
    Zhang ZF, Cui H, Shi MJ (2006) Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate. Phys Chem Chem Phys 8:1017–1021CrossRefGoogle Scholar
  27. 27.
    Xu LS, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22:77–87CrossRefGoogle Scholar
  28. 28.
    Chen YH, Yeh CS (2001) A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem Commun 371–372Google Scholar
  29. 29.
    Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533CrossRefGoogle Scholar
  30. 30.
    Devarajan S, Vimalan B, Sampath SJ (2004) Phase transfer of Au–Ag alloy nanoparticles from aqueous medium to an organic solvent: effect of aging of surfactant on the formation of Ag-rich alloy compositions. Colloid Interface Sci 278:126–132CrossRefGoogle Scholar
  31. 31.
    Liu L, Dahlgren C, Elwing H, Lundqvist H (1996) A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J Immunol Methods 192:173–178CrossRefGoogle Scholar
  32. 32.
    Niederlander HAG, Gooijer C, Velthorst NH (1994) Chemiluminescence detection in liquid chromatography based on photo-oxygenation involving reactive oxygen intermediates. Anal Chim Acta 285:143–159CrossRefGoogle Scholar
  33. 33.
    Zhou GJ, Zhang GF, Chen HY (2002) Development of integrated chemiluminescence flow sensor for the determination of adrenaline and isoprenaline. Anal Chim Acta 463:257–263CrossRefGoogle Scholar
  34. 34.
    Burdo TG W, Seitz WR (1975) Mechanism of cobalt catalysis of luminol chemiluminescence. Anal Chem 47:1639–1643CrossRefGoogle Scholar
  35. 35.
    Shahanara Banu S, Greenway GM, Wheatley RA (2005) Luminol chemiluminescence induced by immobilized xanthine oxidase. Anal Chim Acta 541:89–95CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Berg A, Levanon H, Fessenden RW, Meisel D (2003) On the interactions of free radicals with gold nanoparticles. J Am Chem Soc 125:7959–7963CrossRefGoogle Scholar
  37. 37.
    Merenyi G, Lind J, Shen X, Eriksen TE (1990) Oxidation potential of luminol: is the auto oxidation of singlet organic molecules an outer-sphere electron transfer. J Phys Chem 94:748–752CrossRefGoogle Scholar
  38. 38.
    Ono Y, Matsumura T, Kitajima N, Fukurumi S (1977) Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals. J Phys Chem 81:1307–1311CrossRefGoogle Scholar
  39. 39.
    Lind J, Merenyi G, Eriksen TE (1983) Chemiluminescence mechanism of cyclic hydrazides such as luminol in aqueous solutions. J Am Chem Soc 105:7655–7661CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shifeng Li
    • 1
  • Shanjun Tao
    • 1
  • Fenfen Wang
    • 1
  • Jianguo Hong
    • 1
  • Xianwen Wei*
    • 1
  1. 1.College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Key Laboratory of Molecule-based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations