Microchimica Acta

, Volume 168, Issue 3–4, pp 177–195

Microfluidic techniques for dynamic single-cell analysis

Review Article

Abstract

Dynamic single-cell analysis is a very important and frontier research field of single-cell analysis. Microfluidic techniques have become new and effective tools for precise, high-throughput, automatic analysis of single-cell dynamic process. This review aims to give an overview of dynamic single-cell analysis methods based on microfluidic platforms, with emphasis on the recent developments of microfluidic devices and its application to real-time dynamic monitoring of the signal molecules release from single living cell with temporal and spatial resolution, dynamic gene expression in single cells, the cell death dynamic events at the level of a single cell, and direct cell—cell communication between individual cell pairs.

Keywords

Dynamic single-cell analysis Microfluidic techniques Real-time dynamic monitoring 

References

  1. 1.
    Lu X, Huang WH, Wang ZL, Cheng JK (2004) Recent developments in single-cell analysis. Anal Chim Acta 510:127CrossRefGoogle Scholar
  2. 2.
    Andersson H, Van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15:44CrossRefGoogle Scholar
  3. 3.
    Martin RS, Root PD, Spence DM (2006) Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment. Analyst 131:1197CrossRefGoogle Scholar
  4. 4.
    Di Carlo D, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918CrossRefGoogle Scholar
  5. 5.
    El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403CrossRefGoogle Scholar
  6. 6.
    Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423CrossRefGoogle Scholar
  7. 7.
    Yan H, Zhang BY, Wu HK (2008) Chemical cytometry on microfluidic chips. Electrophoresis 29:1775CrossRefGoogle Scholar
  8. 8.
    Chao TC, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 5:S139CrossRefGoogle Scholar
  9. 9.
    Huang WH, Ai F, Wang ZL, Cheng JK (2008) Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B 866:104CrossRefGoogle Scholar
  10. 10.
    Spegel C, Heiskanen A, Skjolding DHL, Emneus J (2008) Chip based electroanalytical systems for cell analysis. Electroanalysis 20:680CrossRefGoogle Scholar
  11. 11.
    Bao N, Wang J, Lu C (2008) Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391:933CrossRefGoogle Scholar
  12. 12.
    Murad F (2006) Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003CrossRefGoogle Scholar
  13. 13.
    Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Kirino Y, Urano Y, Higuchi T, Nagoshi H, Hirata Y, Nagano T (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73:1967CrossRefGoogle Scholar
  14. 14.
    Yang Q, Zhang XL, Bao XH, Lu HJ, Zhang WJ, Wu WH, Miao HN, Jiao BH (2008) Single cell determination of nitric oxide release using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1201:120CrossRefGoogle Scholar
  15. 15.
    Chen XX, Wang Y, Sheng SH (2008) A novel amperometric sensor for the determination of nitric oxide, and its application in rat liver cells. Microchim Acta 161:255CrossRefGoogle Scholar
  16. 16.
    Goto M, Sato K, Murakami A, Tokeshi M, Kitamori T (2005) Development of a microchip-based bioassay system using cultured cells. Anal Chem 77:2125CrossRefGoogle Scholar
  17. 17.
    Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129:995CrossRefGoogle Scholar
  18. 18.
    Oblak TA, Root P, Spence DM (2006) Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 78:3193CrossRefGoogle Scholar
  19. 19.
    Wang Y, Yin M (2009) Sensitive and rapid determination of nitric oxide in human serum using microchip capillary electrophoresis with laser-induced fluorescence detection. Microchim Acta 166:243CrossRefGoogle Scholar
  20. 20.
    Aspinwall CA, Lakey J, Kennedy RT (1999) Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem 274:6360CrossRefGoogle Scholar
  21. 21.
    Schultz NM, Huang L, Kennedy RT (1995) Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans. Anal Chem 67:924CrossRefGoogle Scholar
  22. 22.
    Roper MG, Shackman JG, Dahlgren GM, Kennedy RT (2003) Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal Chem 75:4711CrossRefGoogle Scholar
  23. 23.
    Shackman JG, Dahlgren GM, Petersa JL, Kennedy RT (2005) Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip 5:56CrossRefGoogle Scholar
  24. 24.
    Dishinger JF, Kennedy RT (2007) Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal Chem 79:947CrossRefGoogle Scholar
  25. 25.
    Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 81:3119CrossRefGoogle Scholar
  26. 26.
    Reid KR, Kennedy RT (2009) Continuous operation of microfabricis devices for 24 h and application to chemical monitoring of living cells. Anal Chem 81:6837CrossRefGoogle Scholar
  27. 27.
    Gee KR, Brown KA, Chen WN, Bishop-Stewart J (2000) Chemical and physiological characterization of fluo-4 Ca 2+-indicator dyes. Cell Calcium 27:97CrossRefGoogle Scholar
  28. 28.
    Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991CrossRefGoogle Scholar
  29. 29.
    Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581CrossRefGoogle Scholar
  30. 30.
    Zhang XL, Yin HB, Cooper JM, Haswell SJ (2006) A microfluidic-based system for analysis of single cells based on Ca2+ flux. Electrophoresis 27:5093CrossRefGoogle Scholar
  31. 31.
    Li XJ, Li PCH (2005) Microfluidic selection and retention of a single cardiac myocyte, on-Chip dye, loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Anal Chem 77:4315CrossRefGoogle Scholar
  32. 32.
    Li XJ, Huang JB, Tibbits GF, Li PCH (2007) Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery. Electrophoresis 28:4723CrossRefGoogle Scholar
  33. 33.
    Cai XX, Klauke N, Glidle A, Cobbold P, Smith GL, Cooper JM (2002) Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 74:908CrossRefGoogle Scholar
  34. 34.
    Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6:1424CrossRefGoogle Scholar
  35. 35.
    Stadman ER (1992) Protein oxidation and aging. Science 257:1220CrossRefGoogle Scholar
  36. 36.
    Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I (2007) Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells. Lab Chip 7:233CrossRefGoogle Scholar
  37. 37.
    Gao N, Li Lu, Shi ZK, Zhang XL, Jin WR (2007) High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis 28:3966CrossRefGoogle Scholar
  38. 38.
    Sun Y, Yin XF, Ling YY, Fang ZL (2005) Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis. Anal Bioanal Chem 382:1472CrossRefGoogle Scholar
  39. 39.
    Zhua LL, Lu M, Yin XF (2008) Ultrasensitive determination of intracellular superoxide in individual HepG2 cells by microfluidic chip electrophoresis. Talanta 75:1227CrossRefGoogle Scholar
  40. 40.
    Chang SC, Rodrigues NP, Zurgil N, Henderson JR, Bedioui F, McNeil CJ, Deutsch M (2005) Simultaneous intra-and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system. Biochem Biophys Res Commun 327:979CrossRefGoogle Scholar
  41. 41.
    Getty-Kaushik L, Richard AMT, Corkey BE (2005) Free fatty acid regulation of glucose-dependent intrinsic oscillatory lipolysis in perifused isolated rat adipocytes. Diabetes 54:629CrossRefGoogle Scholar
  42. 42.
    Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT (2009) Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem 81:2350CrossRefGoogle Scholar
  43. 43.
    Gross P, Kartalov E, Scherer A, Weiner L (2007) Applications of microfluidics for neuronal studies. J Neurosci 252:135Google Scholar
  44. 44.
    Huang WH, Cheng W, Zhang Z, Pang DW, Cheng WZL, JK CDF (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76:483CrossRefGoogle Scholar
  45. 45.
    Spégel C, Heiskanen A, Acklid J, Wolff A, Taboryski R, Emnéus J, Ruzgas T (2007) On-Chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes. Electroanalysis 19:263CrossRefGoogle Scholar
  46. 46.
    Spégel C, Heiskanen A, Pedersen S, Emneus J, Ruzgas T, Taboryski R (2008) Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab Chip 8:323CrossRefGoogle Scholar
  47. 47.
    Sun XH, Gillis KD (2006) On-Chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Anal Chem 78:2521CrossRefGoogle Scholar
  48. 48.
    Chen XH, Gao YF, Hossain M, Gangopadhyay S, Gillis KD (2008) Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Lab Chip 8:161CrossRefGoogle Scholar
  49. 49.
    Shi BX, Huang WH, Cheng JK (2007) Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. Electrophoresis 28:1595CrossRefGoogle Scholar
  50. 50.
    Michelle WL, Martin RS (2008) Microchip-based integration of cell immobilization, electrophoresis, post-column derivatization, and fluorescence detection for monitoring the release of dopamine from PC 12 cells. Analyst 133:1358CrossRefGoogle Scholar
  51. 51.
    Matsubara Y, Murakami YJ, Kobayashi M, Morita Y, Tamiya E (2004) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19:741CrossRefGoogle Scholar
  52. 52.
    Tokuyama T, Fujii SI, Sato K, Abo M, Okubo A (2005) Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device. Anal Chem 77:3309CrossRefGoogle Scholar
  53. 53.
    Hall DA, Zhu H, Zhu XW, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482CrossRefGoogle Scholar
  54. 54.
    Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 76:4098CrossRefGoogle Scholar
  55. 55.
    Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084CrossRefGoogle Scholar
  56. 56.
    Ottesen EA, Hong JW, Quake SR, Leadbette JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464CrossRefGoogle Scholar
  57. 57.
    King KR, Wang SH, Irimia D, Jayaraman A, Tonerabd M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77CrossRefGoogle Scholar
  58. 58.
    Taylora RJ, Falconnet D, Niemisto A, Ramseya SA, Prinza S, Shmulevicha I, Galitskia T, Hansenb CL (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. PNAS 106:3758CrossRefGoogle Scholar
  59. 59.
    Qin JH, Ye NN, Liu X, Lin BG (2005) Microfluidic devices for the analysis of apoptosis. Electrophoresis 26:3780CrossRefGoogle Scholar
  60. 60.
    Chan SD, Luedke G, Valer M, Buhlmann C, Preckel T (2003) Cytometric analysis of protein expression and apoptosis in human primary cells with a novel microfluidic chip-based system. Cytometry 55A:119CrossRefGoogle Scholar
  61. 61.
    Qin JH, Ye NN, Yu LF, Liu DY, Wang W, Ma XJ, Lin BC (2005) Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis. Electrophoresis 26:1155CrossRefGoogle Scholar
  62. 62.
    Tabuchi M, Baba Y (2004) Self-contained on-Chip cell culture and pretreatment system. J Proteome Res 3:871CrossRefGoogle Scholar
  63. 63.
    Tamaki E, Sato K, Tokeshi M, Aihara M, Kitamori T (2002) Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal Chem 74:1560CrossRefGoogle Scholar
  64. 64.
    Kleparnik K, Horky M (2003) Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device. Electrophoresis 24:3778CrossRefGoogle Scholar
  65. 65.
    Ye NN, Qin JH, Liu X, Shi WW, Lin BC (2007) Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device. Electrophoresis 28:1146CrossRefGoogle Scholar
  66. 66.
    Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5:49CrossRefGoogle Scholar
  67. 67.
    Munoz-Pinedo C, Green DR, van den Berg A (2005) Confocal restricted-height imaging of suspension cells (CRISC) in a PDMS microdevice during apoptosis. Lab Chip 5:628CrossRefGoogle Scholar
  68. 68.
    Wlodkowic D, Skommer J, Faleya S, Darzynkiewicz Z, Cooper JM (2009) Dynamic analysis of apoptosis using cyanine SYTO probes: From classical to microfluidic cytometry. Exp Cell Res 315:1706CrossRefGoogle Scholar
  69. 69.
    Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM (2009) Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal Chem 81:5517CrossRefGoogle Scholar
  70. 70.
    Wlodkowic D, Skommer J, McGuinness D, Faley S, Kolch W, Darzynkiewicz Z, Cooper JM (2009) Chip-based dynamic real-time quantification of drug-induced cytotoxicity in human tumor cells. Anal Chem 81:6952CrossRefGoogle Scholar
  71. 71.
    Hirokazu K, Matsuhiko N, Tomokazu M (2003) Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows. Lab Chip 3:208CrossRefGoogle Scholar
  72. 72.
    Lee PJ, Hung PJ, Shaw R, Jan L, Lee LP (2005) Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Appl Phys Lett 86:223902CrossRefGoogle Scholar
  73. 73.
    Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389CrossRefGoogle Scholar
  74. 74.
    Klauke N, Smith G, Cooper JM (2007) Microfluidic systems to examine intercellular coupling of pairs of cardiac myocytes. Lab Chip 7:731CrossRefGoogle Scholar
  75. 75.
    Faley S, Seale K, Hughey J, Schaffer DK, Compernolle SV, McKinney B, Baudenbacher F, Unutmaz D, Wikswo JP (2008) Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:1700CrossRefGoogle Scholar
  76. 76.
    Kirschbaum M, Jaeger MS, Duschl C (2009) Correlating short-term Ca2+ responses with long-term protein expression after activation of single T cells. Lab Chip 9:3517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina

Personalised recommendations