Microchimica Acta

, Volume 168, Issue 3–4, pp 283–291 | Cite as

Identification of ancient gilding technology and Late Bronze Age metallurgy by EDXRF, Micro-EDXRF, SEM-EDS and metallographic techniques

  • Elin Figueiredo
  • Rui J. C. Silva
  • M. Fátima Araújo
  • João C. Senna-Martinez
Original Paper


A combination of analytical techniques capable of elemental and microstructural characterisation was used for the identification of ancient gilding technology and bronze metallurgy. EDXRF, micro-EDXRF, SEM-EDS analysis and metallographic examinations were applied in the study of artefacts dating to the end of the second millennium BC from Crasto de São Romão in Central Portugal. Results report to the finding of an exceptional gilded copper nail among bronze artefacts with 9 wt.% to15 wt.% tin and minute other metallic impurities. Additionally, analysis of a crucible fragment points out for bronze production at the archaeological site. EDXRF and micro-EDXRF analysis made on the copper nail showed that it was gilded only on the front side of the head, and that the gold layer has been lost in the most exposed areas. SEM-EDS analysis showed that the gold layer has 5–8 µm in thickness and is covered with a thick corrosion layer. The gilding technique is discussed based on the gold layer composition and gold/copper substrate interface. So far, this object seems to be the first diffusion gilded artefact identified in the Portuguese territory dated to Late Bronze Age.


Archaeometry EDXRF SEM-EDS Gold Copper Bronze 



This work has been carried out in the framework of the project METABRONZE (Metallurgy and Society in Central Portugal Late Bronze Age, POCTI/HAR/58678/2004) financed by the Portuguese Science Foundation (FCT). E.F. acknowledges the FCT for the SFRH/BD/27358/2006 grant and is thankful to Cristiana Nunes for her valuable comments and suggestions to an early version of the manuscript.

Supplementary material

604_2009_284_MOESM1_ESM.doc (610 kb)
Electronic Supplementary Material 1 (DOC 610 kb)


  1. 1.
    Adams F, Adriaens A, Aerts A, De Raedt I, Janssens K, Schalm O (1997) Micro and surface analysis in art and archaeology. J Anal Atom Spectrom 12:257–265CrossRefGoogle Scholar
  2. 2.
    Reiche I, Chalmin E (2008) Synchrotron radiation and cultural heritage: combined XANES/XRF study at Mn K-edge of blue, grey or black coloured palaeontological and archaeological bone material. J Anal Atom Spectrom 23:799–806CrossRefGoogle Scholar
  3. 3.
    Artoli G (2007) Crystallographic texture analysis of archaeological metals: interpretation of manufacturing techniques. Appl Phys A 89:899–908CrossRefGoogle Scholar
  4. 4.
    De Ryck I, Adriaens A, Pantos E, Adams F (2003) A comparision of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst 128:1104–1109CrossRefGoogle Scholar
  5. 5.
    Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2008) Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchim Acta 162:351–359CrossRefGoogle Scholar
  6. 6.
    Grolimund D, Senn M, Trottmann M, Janousch M, Bonhoure I, Scheidegger AM, Marcus M (2004) Shedding new light on historical metal samples using micro-focused synchrotron X-ray fluorescence and spectroscopy. Spectrochim Acta B 59:1627–1635CrossRefGoogle Scholar
  7. 7.
    Thornton C, Lamberg-Karlovsky CC, Liezers M, Young SMM (2002) On pins and needles: tracing the evolution of copper-base alloying at Tepe Yahya, Iran, via ICP-MS analysis of common-place items. J Archaeol Sci 29:1451–1460CrossRefGoogle Scholar
  8. 8.
    Ferrer Eres MA, Valle-Algarra M, Gimeno Adelantado JV, Peris-Pricente J, Soriano Piñol MD, Mateo-Castro R (2008) Archaeometric study on polymetallic remains from the archeological dig in Lixus (Larache, Morocco) by scanning electron microscopy and metallographic techniques. Microchim Acta 162:341–349CrossRefGoogle Scholar
  9. 9.
    Figueiredo E, Araújo MF, Silva R, Braz Fernandes FM, Senna-Martinez JC, Inês Vaz JL (2006) Metallographic studies of copper based scraps from the Late Bronze Age Santa Luzia archaeological site (Viseu, Portugal). In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage, weathering and conservation, vol.I. Taylor and Francis, London, pp 143–149Google Scholar
  10. 10.
    Gimeno Adelantado JV, Ferrer Eres MA, Valle Algarra FM, Peris Vicente J, Bosch Reig F (2003) Application of SEM/EDX and metallographic techniques to the diachronic study (6th-18th century) of metallurgical materials found in archaeological excavations on the island of Ibiza (Spain). Anal Bioanal Chem 375:1161–1168Google Scholar
  11. 11.
    Giumlia-Mair A (2005) On surface analysis and archaeometallurgy. Nucl Instrum Meth B 239:35–43CrossRefGoogle Scholar
  12. 12.
    Ingo GM, De Caro T, Riccucci C (2006) Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archaeological artefacts from Mediterranean basin. Appl Phys A 83:513–520CrossRefGoogle Scholar
  13. 13.
    Kienlin TL, Bischoff E, Opielka H (2006) Copper and bronze during the eneolithic and early bronze age: a metallographic examination of axes from the northalpine region. Archaeometry 48:453–468CrossRefGoogle Scholar
  14. 14.
    Silva RJC, Figueiredo E, Araújo MF, Pereira F, Braz Fernandes FM (2008) Microstructure interpretation of copper and bronze archaeological artefacts from Portugal. Mater Sci Forum 587–588:365–369CrossRefGoogle Scholar
  15. 15.
    Janssens K, Vittiglio G, Deraedt I et al (2000) Use of microscopic XRF for non-destructive analyses in art and archaeometry. X-Ray Spectrom 29:73–91CrossRefGoogle Scholar
  16. 16.
    Pinasco MR, Ienco MG, Piccardo P, Pellati G, Stagno E (2007) Metallographic approach to the investigation of metallic archaeological objects. Ann Chim-Rome 97:553–574CrossRefGoogle Scholar
  17. 17.
    Senna-Martinez JC (2000) O “Grupo Baiões/Santa Luzia” no Quadro do Bronze Final de Centro de Portugal. In: Senna-Martinez JC, Pedro I (eds) Por Terras de Viriato. Governo Civil do Distrito de Viseu and Museu Nacional de Arqueologia, Viseu, pp 117–146Google Scholar
  18. 18.
    Gil FB, Senna-Martinez JC, Guerra MF, Seruya AI, Fabião C (1989) Produções metalúrgicas do Bronze Final do Cabeço do Crasto de São Romão, Seia: uma primeira análise. In: Actas do I Colóquio Arqueológico de Viseu, Colecção Ser e Estar 2, pp 235–248Google Scholar
  19. 19.
    Figueiredo E, Valério P, Araújo MF, Senna-Martinez JC (2007) Micro-EDXRF surface analyses of a bronze spear head: lead content in metal and corrosion layers. Nucl Instrum Meth B 580:725–727CrossRefGoogle Scholar
  20. 20.
    Pare C (2000) Bronze and the Bronze Age. In: Pare CFE (ed) Metals make the World go Round. Oxbow, Oxford, pp 1–38Google Scholar
  21. 21.
    Vilaça R (1997) Metalurgia do Bronze Final da Beira Interior: revisão dos dados à luz de novos resultados. Estudos Pré-Históricos V:123–154Google Scholar
  22. 22.
    Valério P, Araújo MF, Canha A (2007) EDXRF and micro-EDXRF studies of Late Bronze Age metallurgical productions from Canedotes (Portugal). Nucl Instrum Meth B 263:477–482CrossRefGoogle Scholar
  23. 23.
    Rovira S, Gómez P (1998) The Ria de Huelva hoard and the Late Bronze Age metalwork: a statistical approach. In: Mordant C, Pernot M, Rychner V (eds) L’Atelier du Bronzier en Europe du XXe au VIIIe Siècle avant notre Ère. CTHS, Paris, pp 81–90Google Scholar
  24. 24.
    Northover P, Anheuser K (2000) Gilding in Britain: Celtic, Roman and Saxon. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 109–121Google Scholar
  25. 25.
    Rovira S (2002) Metallurgy and Society in Prehistoric Spain. In: Ottaway BS, Wagner EC (ed). Metals and Society, BAR IS1061, Oxford, pp 5–20Google Scholar
  26. 26.
    Oddy A (2000) A History of Gilding with particular reference to statuary. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 1–19Google Scholar
  27. 27.
    Oddy A (1981) Gilding through the Ages. Gold Bull 14:75–79Google Scholar
  28. 28.
    Gänsicke S, Newman R (2000) Gilded silver from Ancient Nubia. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 73–96Google Scholar
  29. 29.
    Nicholson ED (1979) The ancient craft of gold beating. Gold Bull 12:161–166Google Scholar
  30. 30.
    Healy JF (1999) Pliny the Elder on science and technology. Oxford University Press, New YorkGoogle Scholar
  31. 31.
    Araújo MF, Alves LC, Cabral JMP (1993) Comparison of EDXRF and PIXE in the analysis of ancient gold coins. Nucl Instrum Meth B 75:450–453CrossRefGoogle Scholar
  32. 32.
    Selwyn L (2000) Corrosion chemistry of gilded silver and copper. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 21–47Google Scholar
  33. 33.
    Strahan DK, Maines CA (2000) Lacquer as an adhesive for gilding on copper alloy sculpture in southeast Asia. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 185–201Google Scholar
  34. 34.
    Guerra MF, Calligaro T (2003) Gold cultural heritage objects: a review of studies of provenance and manufacturing technologies. Meas Sci Technol 14:1527–1537CrossRefGoogle Scholar
  35. 35.
    Griffin PS (2000) The selective use of gilding on Egyptian Polychromed Bronzes. In: Drayman-Weisser T (ed) Gilded Metal—History, Technology and Conservation. Archtype and The American Institute for Conservation of Historic and Artistic Works, London, pp 49–72Google Scholar
  36. 36.
    Pinnel MR (1979) Diffusion-related behaviour of gold in thin film systems. Gold Bull 12:62–71Google Scholar
  37. 37.
    Figueiredo E, Senna-Martinez JC, Silva RJC, Araújo MF (2009) Orientalizing Artifacts from Fraga dos Corvos Rock Shelter in North Portugal. Mater Manuf Process 24:949–954CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elin Figueiredo
    • 1
    • 2
    • 3
  • Rui J. C. Silva
    • 2
  • M. Fátima Araújo
    • 1
  • João C. Senna-Martinez
    • 4
  1. 1.Química Analítica e Ambiental, Instituto Tecnológico e NuclearEstrada Nacional 10SacavémPortugal
  2. 2.CENIMAT / I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.Departamento de Conservação e Restauro, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  4. 4.Centro de Arqueologia (Uniarq), Faculdade de LetrasUniversidade de LisboaLisbonPortugal

Personalised recommendations