Advertisement

Microchimica Acta

, 167:259 | Cite as

Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain

  • Mark-Steven Steiner
  • Robert J. Meier
  • Christian Spangler
  • Axel Duerkop
  • Otto S. Wolfbeis
Original Paper

Abstract

A method was developed for the determination of biogenic amines (BAs) via micellar electrokinetic chromatography along with laser induced fluorescence detection using the amino-reactive chameleon stain Py-1. A labeling protocol was established for seven primary BAs by optimizing the reaction conditions in terms of the amount of reagents, reaction temperature, reaction time and solvent. Derivatization was accomplished within 30 min and is visible by the naked eye because it is accompanied by a color change from blue to red. Separation of the labeled BAs was achieved within 15 min with a background buffer of pH 2.5 containing phosphate, Tween®80, and methanol. The LODs range from 0.1 to 0.9 µmol·L−1, with RSDs ranging from 1.1 to 4.2% at 10 µmol·L−1. The method was applied to the determination of histamine in various fish samples.

Keywords

Biogenic amines Capillary electrophoresis Chameleon label Derivatization Laser-induced fluorescence 

References

  1. 1.
    Hwang BS, Wang JT, Choong YM (2003) A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chem 82:329–334CrossRefGoogle Scholar
  2. 2.
    Du WX, Lin CM, Phu AT et al (2002) Development of biogenic Amines in Yellowfin Tuna (Thunnus albacares): effect of storage and correlation with decarboxylase-positive bacterial flora. J Food Sci 67:292–301CrossRefGoogle Scholar
  3. 3.
    Paleologos EK, Kontominas MG (2004) On-line solid-phase extraction with surfactant accelerated on-column derivatization and micellar liquid chromatographic separation as a tool for the determination of biogenic amines in various food substrates. Anal Chem 76:1289–1294CrossRefGoogle Scholar
  4. 4.
    Veciana Nogue MT, Marine Font A, Vidal Carou MC (1997) Biogenic amines as hygienic quality indicators of tuna. Relationships with microbial counts, ATP-related compounds, volatile amines and organoleptic changes. J Agric Food Chem 45:2036–2041CrossRefGoogle Scholar
  5. 5.
    Wu ML, Yang CC, Yang CY et al (1997) Scromboid fish poisoning: an overlooked marine food poisoning. Vet Hum Toxicol 39:36–241Google Scholar
  6. 6.
    Nout MJR (1994) Fermented foods and food safety. Food Res Int 27:291–298CrossRefGoogle Scholar
  7. 7.
    Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486CrossRefGoogle Scholar
  8. 8.
    Jayarajah CN, Skelley AM, Fortner AD et al (2007) Analysis of neuroactive amines in fermented beverages using a portable microchip capillary electrophoresis system. Anal Chem 79:8162–8169CrossRefGoogle Scholar
  9. 9.
    Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231CrossRefGoogle Scholar
  10. 10.
    Cortacero-Ramírez S, Arráez-Román D, Segura-Carretero A et al (2007) Determination of biogenic amines in beers and brewing-process samples by capillary electrophoresis coupled to laser-induced fluorescence detection. Food Chem 100:383–389CrossRefGoogle Scholar
  11. 11.
    Powell PR, Ewing AG (2005) Recent advances in the application of capillary electrophoresis to neuroscience. Anal Bioanal Chem 382:581–591CrossRefGoogle Scholar
  12. 12.
    Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 926:103–113CrossRefGoogle Scholar
  13. 13.
    Bouchereau A, Guenot P, Larher F (2000) Analysis of amines in plant materials. J Chromatogr B 747:49–67CrossRefGoogle Scholar
  14. 14.
    Zhao YY, Cai LS, Jing ZZ et al (2003) Determination of aliphatic amines using N-succinimidyl benzoate as a new derivatization reagent in gas chromatography combined with solid-phase microextraction. J Chromatogr A 1021:175–181CrossRefGoogle Scholar
  15. 15.
    Nelson TL, Tran I, Ingallinera TG et al (2007) Multi-layered analyses using directed partitioning to identify and discriminate between biogenic amines. Analyst 132:1024–1030CrossRefGoogle Scholar
  16. 16.
    Kartsova LA, Sidorova AA, Ivanova AS (2007) Electrophoretic determination of biogenic amines in biological fluids. J Anal Chem 62:960–964CrossRefGoogle Scholar
  17. 17.
    Santos BM, Simonet B, Rios A et al (2004) Direct automatic determination of biogenic amines in wine by flow injection-capillary electrophoresis-mass spectrometry. Electrophoresis 25:3427–3433CrossRefGoogle Scholar
  18. 18.
    Beard NP, Edel JB, de Mello AJ (2004) Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines. Electrophoresis 25:2363–2373CrossRefGoogle Scholar
  19. 19.
    Lau SK, Zaccard F, Little M et al (1998) Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis. J Chromatogr A 809:203–210CrossRefGoogle Scholar
  20. 20.
    Cao LW (2007) Determination of catecholamines and serotonin by micellar electrokinetic chromatography with laser-induced fluorescence detection. Biomed Chromatogr 21:708–715CrossRefGoogle Scholar
  21. 21.
    Hernandez-Orte P, Peña-Gallego A, Ibarz MJ et al (2006) Determination of the biogenic amines in musts and wines before and after malolactic fermentation using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the derivatizing agent. J Chromatogr A 1129:160–164CrossRefGoogle Scholar
  22. 22.
    Chen Z, Wu J, Baker GB et al (2001) Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. J Chromatogr A 914:293–305CrossRefGoogle Scholar
  23. 23.
    Zhang N, Wang H, Zhao YZ et al (2008) Sensitive determination of total aliphatic amines in water samples by spectrofluorimetry using the new fluorogenic probe 3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde. Microchim Acta 162:205–210CrossRefGoogle Scholar
  24. 24.
    Wetzl BK, Yarmoluk SM, Craig DB et al (2004) Chameleon labels for staining and quantifying proteins. Angewandte Chemie 43:5400–5410CrossRefGoogle Scholar
  25. 25.
    Craig DB, Wetzl BK, Duerkop A et al (2005) Determination of picomolar concentrations of proteins using novel amino reactive chameleon labels and capillary electrophoresis laser-induced fluorescence detection. Electrophoresis 26:2208–2213CrossRefGoogle Scholar
  26. 26.
    Meier RJ, Steiner MS, Duerkop A et al (2008) SDS-PAGE of proteins using a chameleon-type of fluorescent prestain. Anal Chem 80:6274–6279CrossRefGoogle Scholar
  27. 27.
    Hoefelschweiger B, Wolfbeis OS (2008) Probing DNA hybridization in homogeneous solution and at interfaces via measurement of the intrinsic fluorescence decay time of a single label. J Fluoresc 18:413–421CrossRefGoogle Scholar
  28. 28.
    Oguri S, Tanagaki H, Hamaya M et al (2003) On-line preconcentration prior to on-column derivatization monolith octadecasiloxane capillary electrochromatography for the determination of biogenic amines. Anal Chem 75:5240–5245CrossRefGoogle Scholar
  29. 29.
    Mureşan L, Valera RR, Frébort I et al (2008) Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim Acta 163:219–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mark-Steven Steiner
    • 1
  • Robert J. Meier
    • 1
  • Christian Spangler
    • 1
  • Axel Duerkop
    • 1
  • Otto S. Wolfbeis
    • 1
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations