Advertisement

Microchimica Acta

, Volume 166, Issue 3–4, pp 343–348 | Cite as

Determination of 3, 4-dihydroxybenzoic acid by electrocatalytic oxidation at an ionic liquid modified electrode

  • Wei SunEmail author
  • Qiang Jiang
  • Mengying Xi
  • Kui Jiao
Original Paper

Abstract

An electrode modified with an ionic liquid was used for the electrochemical determination of 3,4-dihydroxybenzoic acid (DHBA). Cyclic voltammetry indicated a pair of well-defined quasi-reversible redox peaks with a formal peak potential located at 586 mV (vs. the SCE). The voltammetric response to DHBA is largely improved compared to a traditional carbon paste electrode. This is attributed to a larger interface (due to the presence of an ionic liquid) with higher conductivity and inherent catalytic capability. The charge transfer coefficient, the standard rate constant and the apparent diffusion coefficient were calculated. The oxidation peak current was linearly related to the concentration of DHBA in the range 0.8–1.5 mM, and the detection limit was 0.62 µM (at 3σ). The effect of potential interferents was investigated, and the method was successfully applied to the determination of DHBA in different samples.

Keywords

3, 4-Dihydroxybenzoic acid Ionic liquid Carbon paste electrode Voltammetry N–Butylpyridinium hexafluorophosphate 

Notes

Acknowledgements

We are grateful to the financial support of the National Natural Science Foundation of China (No. 20635020, 20405008).

References

  1. 1.
    Babich H, Sedletcaia A, Kenigsberg B (2002) Inhibition of central nervous system aromatase activity: a mechanism for fenarimol-induced infertility in the male rat. Pharmacol Toxicol 91:235CrossRefGoogle Scholar
  2. 2.
    Garcia-Parrilla MC, Camacbo ML, Heredia FJ, Troncoso AM (1994) Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chem 50:313CrossRefGoogle Scholar
  3. 3.
    Lores M, Carcía CM, Cela R (1994) High-performance liquid chromatography of phenolic aldehydes with highly selective detection by means of postcolumn photochemical derivatization. J Chromatogr A 683:31CrossRefGoogle Scholar
  4. 4.
    Angerosa F, d'Alessandro N, Konstantinou P, Giacinto LD (1995) GC-MS evaluation of phenolic compounds in virgin olive oil. J Agric Food Chem 43:1802CrossRefGoogle Scholar
  5. 5.
    Shi R, Schwedt G (1995) HPLC-und DC-Analytik phenolischer Inhaltstoffe im Wein. Deutsch Lebensm Rundsch. Deutsch Lebensm Rundsch 91:14Google Scholar
  6. 6.
    Gil MI, Garcia-Viguera C, Bridle P, Thomas-Barberan FA (1995) Analysis of phenolic compounds in Spanish red wines by capillary zone electrophoresis. Z Lebensm Unters Forsch 200:278CrossRefGoogle Scholar
  7. 7.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2001) Electrocatalytic oxidation of 3, 4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes. Electrochim Acta 47:651CrossRefGoogle Scholar
  8. 8.
    Moghaddam AB, Kobarfard F, Davarani SSH, Nematollahi D, Shamsipur M, Fakhari AR (2006) Electrochemical study of 3, 4-dihydroxybenzoic acid in the presence of 4-hydroxy-1-methyl-2(1H)-quinolone: Application to electrochemical synthesis of new benzofuran derivative. J Electroanal Chem 586:161CrossRefGoogle Scholar
  9. 9.
    Golabi SM, Nematollahi D (1997) Electrochemical study of 3, 4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives. J Electroanal Chem 430:141CrossRefGoogle Scholar
  10. 10.
    Zhao JW, Niu L, Dong SJ (1998) Electrochemical behavior of 3, 4-dihydroxybenzoic acid in self assembled monolayer electrode system. Chem J Chinese U 19:1749Google Scholar
  11. 11.
    Wang GL, Wang R, Wu XQ, Zhang ZR (2007) Molecular imprinted over-oxidized polypyrrole modified electrode for the detection of 3, 4-dihydrobenzoic acid. Chem Sensors 27:31Google Scholar
  12. 12.
    Buzzeo MC, Hardace C, Compton RG (2004) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76:4583CrossRefGoogle Scholar
  13. 13.
    Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071CrossRefGoogle Scholar
  14. 14.
    Buzzo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106Google Scholar
  15. 15.
    Sun W, Zhai ZQ, Wang DD, Liu SF, Jiao K (2009) Electrochemical behaviours of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Bioelectrochemistry 74:295CrossRefGoogle Scholar
  16. 16.
    Mehnert CP (2004) Supported ionic liquid catalysis. Chem Eur J 11:50CrossRefGoogle Scholar
  17. 17.
    Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432CrossRefGoogle Scholar
  18. 18.
    Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039CrossRefGoogle Scholar
  19. 19.
    Bindhu LV, Abraham ET (2003) Immobilization of horseradish peroxidase on chitosan for use in nonaqueous media. J Appl Polym Sci 88:1456CrossRefGoogle Scholar
  20. 20.
    Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126CrossRefGoogle Scholar
  21. 21.
    Liu Y, Huang LJ, Dong SJ (2007) Electrochemical catalysis and thermal stability characterization of laccase–carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Biosensors Bioelectron 23:35CrossRefGoogle Scholar
  22. 22.
    Wang Q, Tang H, Xie QJ, Tan L, Zhang YY, Li BM, Yao SZ (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52:6630CrossRefGoogle Scholar
  23. 23.
    Musameh MM, Kachoosangi RT, Xiao L, Russell A, Compton RG (2008) Ionic liquid-carbon composite glucose biosensor. Biosens Bioelectron 24:87CrossRefGoogle Scholar
  24. 24.
    Lu XB, Hu JQ, Yao X, Wang ZP, Li JH (2006) Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules 7:975CrossRefGoogle Scholar
  25. 25.
    Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820CrossRefGoogle Scholar
  26. 26.
    Safavi A, Maleki N, Moradlou O, Sorouri M (2008) Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode. Electrochem Commun 10:420CrossRefGoogle Scholar
  27. 27.
    Sun W, Wang DD, Gao RF, Jiao K (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem Commun 9:1159CrossRefGoogle Scholar
  28. 28.
    Sun W, Gao RF, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560CrossRefGoogle Scholar
  29. 29.
    Sun W, Li XQ, Wang Y, Zhao RJ, Jiao K (2009) Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier. Electrochim Acta 54:4141CrossRefGoogle Scholar
  30. 30.
    Sun W, Li YZ, Yang MX, Liu SF, Jiao K (2008) Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem Commun 10:298CrossRefGoogle Scholar
  31. 31.
    Sun W, Li YZ, Gao HW, Jiao K (2009) Direct electrochemistry of double stranded DNA on ionic liquid modified carbon paste electrode. Microchim Acta 165:313CrossRefGoogle Scholar
  32. 32.
    Musameh MM, Kachoosangi RT, Xiao L, Russell A, Compton RG (2008) Ionic liquid-carbon composite glucose biosensor. Biosens Bioelectron 24:87CrossRefGoogle Scholar
  33. 33.
    Gao R, Shangguan XD, Qiao GJ, Zheng JB (2008) Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid. Electroanalysis 20:2537CrossRefGoogle Scholar
  34. 34.
    Li CM, Zang JF, Zhan DP, Chen W, Sun CQ, Teo AL, Chua YT, Lee VS, Moochhala SM (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanalysis 18:713CrossRefGoogle Scholar
  35. 35.
    Wei W, Jin HH, Zhao GC (2009) A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta 164:167CrossRefGoogle Scholar
  36. 36.
    Li JW, Zhao FQ, Zeng BZ (2007) Characterization of a graphite powder—ionic liquid paste coated gold electrode, and a method for voltammetric determination of promethazine. Microchim Acta 157:27CrossRefGoogle Scholar
  37. 37.
    Tao H, Wei WZ, Zeng XD, Liu XY, Zhang XJ, Zhang YM (2009) Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim Acta. doi: 10.1007/s00604-009-0163-1
  38. 38.
    Sun W, Yang MX, Gao RF, Jiao K (2007) Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis 19:1597CrossRefGoogle Scholar
  39. 39.
    Musameh M, Wang J (2008) Sensitive and stable amperometric measurements at ionic liquid–carbon paste microelectrodes. Anal Chim Acta 606:45CrossRefGoogle Scholar
  40. 40.
    Nicholson RS, Shai I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706CrossRefGoogle Scholar
  41. 41.
    Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36:932CrossRefGoogle Scholar
  42. 42.
    O’Neill RD (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo.A review. Analyst 119:767CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations