Skip to main content
Log in

Fluorescent acrylamide nanoparticles for boronic acid based sugar sensing — from probes to sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fluorescent nanoparticles containing covalently bound phenylboronic acids (~ 250 nm in diameter) are presented that respond to carbohydrates by swelling which is detected using fluorescence resonance energy transfer. The nanoparticles are characterized in terms of kinetics, response time and dynamic range. The response of the particles to glucose at pH 7.5 depends on the kind of phenylboronic acid and on ionic strength. The particles were immobilized in hydrogel sensor layers that enable continuous optical sensing of carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32(10):1205–1237

    Article  CAS  Google Scholar 

  2. Iwai K, Matsumura Y, Uchiyama S, Silva APD (2005) Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range. J Mater Chem 15(27–28):2796–2800

    Article  CAS  Google Scholar 

  3. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346(6282):345–347

    Article  CAS  Google Scholar 

  4. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev 58(15):1655–1670

    Article  CAS  Google Scholar 

  5. Mao J, McShane MJ (2006) Transduction of volume change in pH-sensitive hydrogels with resonance energy transfer. Adv Mater 18(17):2289–2293

    Article  CAS  Google Scholar 

  6. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Delivery Rev 54(1):79–98

    Article  CAS  Google Scholar 

  7. Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28(25):3687–3703

    Article  CAS  Google Scholar 

  8. Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132:2–11

    Article  CAS  Google Scholar 

  9. Cai Q, Zeng K, Ruan C, Desai TA, Grimes CA (2004) A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76(14):4038–4043

    Article  CAS  Google Scholar 

  10. Podual K, Doyle FJ, Peppas NA (2000) Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J Control Release 67(1):9–17

    Article  CAS  Google Scholar 

  11. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1):1–34

    Article  CAS  Google Scholar 

  12. Matsumoto A, Kurata T, Shiino D, Kataoka K (2004) Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 37(4):1502–1510

    Article  CAS  Google Scholar 

  13. Lapeyre V, Gosse I, Chevreux S, Ravaine V (2006) Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7(12):3356–3363

    Article  CAS  Google Scholar 

  14. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40(3):670–678

    Article  CAS  Google Scholar 

  15. Zhang Y, Guan Y, Zhou S (2006) Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules 7(11):3196–3201

    Article  CAS  Google Scholar 

  16. Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4(5):1410–1416

    Article  CAS  Google Scholar 

  17. Zhang S, Chu L, Xu D, Zhang J, Ju X, Xie R (2008) Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature. Polym Adv Technol 19(8):937–943

    Article  CAS  Google Scholar 

  18. Zhang Y, Guan Y, Zhou S (2007) Permeability control of glucose-sensitive nanoshells. Biomacromolecules 8(12):3842–3847

    Article  CAS  Google Scholar 

  19. Lapeyre V, Ancla C, Catargi B, Ravaine V (2008) Glucose-responsive microgels with a core-shell structure. J Colloid Interface Sci 327(2):316–323

    Article  CAS  Google Scholar 

  20. Hoare T, Pelton R (2008) Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9(2):733–740

    Article  CAS  Google Scholar 

  21. Horgan AM, Marshall AJ, Kew SJ, Dean KES, Creasey CD, Kabilan S (2006) Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens Bioelectron 21(9):1838–1845

    Article  CAS  Google Scholar 

  22. Alexeev VL, Sharma AC, Goponenko AV, Das S, Lednev IK et al (2003) High ionic strength glucose-sensing photonic crystal. Anal Chem 75(10):2316–2323

    Article  CAS  Google Scholar 

  23. Worsley GJ, Tourniaire GA, Medlock KES, Sartain FK, Harmer HE et al (2007) Continuous blood glucose monitoring with a thin-film optical sensor. Clin Chem 53(10):1820–1826

    Article  CAS  Google Scholar 

  24. Samoei GK, Wang W, Escobedo JO, Xu X, Schneider H et al (2006) A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew Chem Int Ed 45(32):5319–5322

    Article  CAS  Google Scholar 

  25. Ivanov AE, Thammakhet C, Kuzimenkova MV, Thavarungkul P, Kanatharana P et al (2008) Thin semitransparent gels containing phenylboronic acid: porosity, optical response and permeability for sugars. J Mol Recognit 21(2):89–95

    Article  CAS  Google Scholar 

  26. Kuzimenkova MV, Ivanov AE, Thammakhet C, Mikhalovska LI, Galaev IY et al (2008) Optical responses, permeability and diol-specific reactivity of thin polyacrylamide gels containing immobilized phenylboronic acid. Polymer 49(6):1444–1454

    Article  CAS  Google Scholar 

  27. Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78(14):5149–5157

    Article  CAS  Google Scholar 

  28. Alexeev VL, Das S, Finegold DN, Asher SA (2004) Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 50(12):2353–2360

    Article  CAS  Google Scholar 

  29. Lee Y, Pruzinsky SA, Braun PV (2004) Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. Langmuir 20(8):3096–3106

    Article  CAS  Google Scholar 

  30. Holtz JH, Holtz JSW, Munro CH, Asher SA (1998) Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem 70(4):780–791

    Article  CAS  Google Scholar 

  31. Zenkl G, Mayr T, Klimant I (2008) Sugar-Responsive fluorescent nanospheres. Macromol Biosci 8(2):146–152

    Article  CAS  Google Scholar 

  32. Shiomori K, Ivanov AE, Galaev IY, Kawano Y, Mattiasson B (2004) Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido) phenylboronic acid. Macromol Chem Phys 205(1):27–34

    Article  CAS  Google Scholar 

  33. Elmas B, Onur M, Şenel S et al (2002) Temperature controlled RNA isolation by N-isopropylacrylamide-vinylphenyl boronic acid copolymer latex. Colloid Polym Sci 280(12):1137–1146

    Article  CAS  Google Scholar 

  34. Springsteen G, Wang B (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron 58(26):5291–5300

    Article  CAS  Google Scholar 

  35. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-Responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5(3):1038–1045

    Article  CAS  Google Scholar 

  36. Lee M, Kabilan S, Hussain A, Yang X, Blyth J, Lowe CR (2004) Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal Chem 76(19):5748–5755

    Article  CAS  Google Scholar 

  37. Kuzimenkova MV, Ivanov AE, Galaev IY (2006) Boronate-containing copolymers: polyelectrolyte properties and sugar-specific interaction with agarose gel. Macromol Biosci 6(2):170–178

    Article  CAS  Google Scholar 

  38. Pan X, Yang X, Lowe CR (2008) Evidence for a cross-linking mechanism underlying glucose-induced contraction of phenylboronate hydrogel. J Mol Recognit 21(4):205–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Klaus Koren and the FELMI-ZMF institute are gratefully thanked for preparing and taking the SEM pictures. Herbert Motter is thanked for the digestion and the measurements on the ICP-OES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Zenkl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information

Materials, synthesis of the monomers, measurement methods and additional figures can be found in the Supporting Information of the on-line version of this article. (PDF 858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenkl, G., Klimant, I. Fluorescent acrylamide nanoparticles for boronic acid based sugar sensing — from probes to sensors. Microchim Acta 166, 123–131 (2009). https://doi.org/10.1007/s00604-009-0172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0172-0

Keywords

Navigation