Microchimica Acta

, Volume 166, Issue 1–2, pp 69–75

Speciation of chromium in water samples using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry

  • Payam Hemmatkhah
  • Araz Bidari
  • Sanaz Jafarvand
  • Mohammad Reza Milani Hosseini
  • Yaghoub Assadi
Original Paper


A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L−1, and detection limits are 0.07 and 0.08 µg L−1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n = 7).


Dispersive liquid–liquid microextraction Chromium speciation Preconcentration Flame atomic absorption spectrometry Microsample introduction Water analysis 

Supplementary material

604_2009_167_MOESM1_ESM.doc (56 kb)
ESM 1(DOC 56 kb)


  1. 1.
    Stallings D, Vincent JB (2006) Chromium: a case study in how not to perform nutritional research. Curr Topics Nutraceutical Res 4:89Google Scholar
  2. 2.
    Nriagu JO, Nieboer E (1988) Chromium in the natural and human environment. Wiley, New YorkGoogle Scholar
  3. 3.
    Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263CrossRefGoogle Scholar
  4. 4.
    Wu T, Jiang Y, Han D, Wang F, Zhu J (2005) Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim Acta 159:333CrossRefGoogle Scholar
  5. 5.
    Ren Y, Fan Z, Wang J (2006) Speciation analysis of chromium in natural water samples by electrothermal atomic absorbance spectrometry after separation/preconcentration with nanometer-sized zirconium oxide immobilized on silica gel. Microchim Acta 158:227CrossRefGoogle Scholar
  6. 6.
    Kendüzler E, Yalçınkaya Ö, Baytak S, Türker AR (2008) Application of full factorial design for the preconcentration of chromium by solid phase extraction with Amberlyst 36 resin. Microchim Acta 160:389CrossRefGoogle Scholar
  7. 7.
    Karosi R, Andruch V, Posta J, Balogh J (2006) Separation of chromium (VI) using complexation and its determination with GFAAS. Microchem J 82:61CrossRefGoogle Scholar
  8. 8.
    Themelis DG, Kika FS, Economou A (2006) Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent. Talanta 69:615CrossRefGoogle Scholar
  9. 9.
    Grabarczyk M, Tyszczuk K, Korolczuk M (2006) Catalytic adsorptive stripping voltammetric procedure for determination of total chromium in environmental materials. Electroanalysis 18:1223CrossRefGoogle Scholar
  10. 10.
    Sun YC, Lin CY, Wu SF, Chung YT (2006) Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples. Spectrochim Acta - Part B At Spectrosc 61:230CrossRefGoogle Scholar
  11. 11.
    Schramel P, Xu LQ, Knapp G, Michaelis M (2005) Application of an on-line preconcentration system in simultaneous ICP-AES. Microchim Acta 106:191CrossRefGoogle Scholar
  12. 12.
    Padarauskas A, Judzentiene A, Naujalis E, Paliulionyte V (1998) On-line preconcentration and determination of chromium(VI) in waters by high-performance liquid chromatography using pre-column complexation with 1,5-diphenylcarbazide. J Chromatogr A 808:193CrossRefGoogle Scholar
  13. 13.
    Minami T, Sohrin Y, Ueda L (2005) Determination of chromium. Copper and lead in river water by graphite-furnace atomic absorption spectrometry after coprecipitation with terbium hydroxide. Anal Sci 21:1519CrossRefGoogle Scholar
  14. 14.
    Sun Z, Liang P (2008) Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Microchim Acta 162:121CrossRefGoogle Scholar
  15. 15.
    Paleologos EK, Stalikas CD, Tzouwara-Karayanni SM, Karayannis MI (2001) Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis—spectrofluorimetry. Anal Chim Acta 436:49CrossRefGoogle Scholar
  16. 16.
    Tang AN, Jiang DQ, Jiang Y, Wang SW, Yan XP (2004) Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. J Chromatogr A 1036:183CrossRefGoogle Scholar
  17. 17.
    Adria-Cerezo DM, Llobat-Estelles M, Maurı-Aucejo AR (2000) Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry. Talanta 51:531CrossRefGoogle Scholar
  18. 18.
    El-Shahawi MS, Hassan SSM, Othman AM, Zyada MA, El-Sonbati MA (2005) Chemical speciation of chromium(III, VI) employing extractive spectrophotometry and tetraphenylarsonium chloride or tetraphenylphosphonium bromide as ion-pair reagent. Anal Chim Acta 534:319CrossRefGoogle Scholar
  19. 19.
    Beni A, Karosi R, Posta J (2007) Speciation of hexavalent chromium in waters by liquid–liquid extraction and GFAAS determination. Microchem J 85:103CrossRefGoogle Scholar
  20. 20.
    Nielson SC, Hansen EH (2000) Interfacing flow injection analysis (sequential injection analysis) and electro-thermal atomic absorption spectrometry determination of trace-levels of Cr(VI) via on-line pre-concentration by adsorption in a knotted reactor and by liquid–liquid extraction. Anal Chim Acta 422:47CrossRefGoogle Scholar
  21. 21.
    Karadjova I (2005) Determination of Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb in natural waters, alkali and alkaline earth salts by electrothermal atomic absorption spectrometry after preconcentration by column solid phase extraction. Microchim Acta 130:185CrossRefGoogle Scholar
  22. 22.
    Anthemidis AN, Koussoroplis S-JV (2007) Determination of chromium(VI) and lead in water samples by on-line sorption preconcentration coupled with flame atomic absorption spectrometry using a PCTFE-beads packed column. Talanta 71:1728CrossRefGoogle Scholar
  23. 23.
    Anthemidis AN, Zachariadis GA, Koussoroplis S-JV, Stratis JA (2002) Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57:15CrossRefGoogle Scholar
  24. 24.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1CrossRefGoogle Scholar
  25. 25.
    Garcia-Lopez M, Rodriguez I, Cela R (2007) Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples. J Chromatogr A 1166:9CrossRefGoogle Scholar
  26. 26.
    Leong MI, Huang SD (2008) Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J Chromatogr A 1211:8CrossRefGoogle Scholar
  27. 27.
    Liang P, Xu J, Li Q (2008) Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Anal Chim Acta 609:53CrossRefGoogle Scholar
  28. 28.
    Maleki R, Nezhad NM, Samadi N, Farhadi K (2009) Trace determination of EDTA from water samples using dispersive liquid–liquid microextraction coupled with HPLC-DAD. Microchim Acta 165:97Google Scholar
  29. 29.
    Melwanki MB, Fuh MR (2008) Partitioned dispersive liquid–liquid microextraction: an approach for polar organic compounds extraction from aqueous samples. J Chromatogr A 1207:24CrossRefGoogle Scholar
  30. 30.
    Farajzadeh MA, Bahrama M, Jonsson JA (2007) Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Anal Chim Acta 591:69CrossRefGoogle Scholar
  31. 31.
    Shokoufi N, Shemirani F, Assadi Y (2007) Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal Chim Acta 597:349CrossRefGoogle Scholar
  32. 32.
    Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR (2007) Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry ultra trace determination of cadmium in water samples. Anal Chim Acta 585:305CrossRefGoogle Scholar
  33. 33.
    Naseri MT, Milani Hosseini MR, Assadi Y, Kiani A (2008) Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta 75:56CrossRefGoogle Scholar
  34. 34.
    Bidari A, Hemmatkhah P, Jafarvand S, Milani Hosseini MR, Assadi Y (2008) Selenium analysis in water samples by dispersive liquid–liquid microextraction based on piazselenol formation and GC-ECD. Microchim Acta 163:243CrossRefGoogle Scholar
  35. 35.
    Liang P, Sang H (2008) Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Anal Biochem 380:21CrossRefGoogle Scholar
  36. 36.
    Naseri MT, Hemmatkhah P, Milani Hosseini MR, Assadi Y (2008) Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Anal Chim Acta 610:135CrossRefGoogle Scholar
  37. 37.
    AN Anthemidis, K-IG Ioannou (2009) On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta. doi:10.1016/j.talanta.2009.03.005
  38. 38.
    Paleologos EK, Stalikas CD, Karayannis MI (2001) An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology. Analyst 126:389CrossRefGoogle Scholar
  39. 39.
    Tsogas GZ, Giokas DL, Vlessidis AG, Evmiridis NP (2004) A single-reagent method for the speciation of chromium in natural waters by flame atomic absorption spectrometry based on vesicular liquid coacervate extraction. Spectrochim Acta - Part B At Spectrosc 59:957CrossRefGoogle Scholar
  40. 40.
    Andrle CM, Jakubowski N, Broekaert JAC (1997) Speciation of chromium using reversed phased-high performance liquid chromatography coupled to different spectrometric detection methods. Spectrochim Acta - Part B At Spectrosc 52:189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Payam Hemmatkhah
    • 1
    • 2
  • Araz Bidari
    • 1
    • 2
  • Sanaz Jafarvand
    • 1
    • 2
  • Mohammad Reza Milani Hosseini
    • 1
    • 2
  • Yaghoub Assadi
    • 1
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryIran University of Science and TechnologyTehranIran
  2. 2.Electroanalytical Chemistry Research CenterIran University of Science and TechnologyTehranIran

Personalised recommendations