Microchimica Acta

, Volume 163, Issue 1–2, pp 63–70 | Cite as

An electrochemical impedimetric arrayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles

Original Paper


A novel sensitive electrochemical impedance immunoassay based on metal nanoparticle labels and ITO electrodes has been developed. First, 2-aminobenzoic acid (2-ABA) was electropolymerized onto an indium tin oxide (ITO) electrode. The coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysulfosuccinimide were then used to activate the electroconductive polymer to form an active ester layer which could react with amino groups of antigen. Subsequently, immunoreaction was carried out between antigen and antibody labeled with gold nanoparticles, followed by the addition of the silver enhancer solution. The charge transfer processes of [Fe(CN)6]4−/[Fe(CN)6]3− on the ITO surface were affected due to the formation of silver precipitation on the gold nanoparticles, which was determined by electrochemical impedance spectroscopy. The surface was characterized by scanning electron microscopy. Finally, a multiplexed arrayed immunosensor was is described and the samples of antibody and antibody mixture were assayed specifically. The experimental conditions such as the number of electropolymerization cycles and the time of silver enhancement were examined and optimized. The detection range of antibody labeled with gold nanoparticles was between 10.0 ng mL−1 and 10.0 µg mL−1.

Keywords: Electrochemical immunosensor; ITO arrayed electrodes; silver enhancement; electrochemical impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Malinauskas, A, Holze, R 1998An in situ spectroelectrochemical study of redox reactions at polyaniline-modified ITO electrodesElectrochim Acta432563CrossRefGoogle Scholar
  2. Brewer, S H, Franzen, S 2004Calculation of the electronic and optical properties of indium tin oxide by density functional theoryChem Phys300285CrossRefGoogle Scholar
  3. Stotter, J, Show, Y, Wang, S H, Swain, G 2005Comparison of the electrical, optical, and electrochemical properties of diamond and indium tin oxide thin-film electrodesChem Mater174880CrossRefGoogle Scholar
  4. Shi, L X, Lu, Y X, Sun, J, Zhang, J, Sun, C Q, Liu, J Q, Shen, J C 2003Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer depositionBiomacromolecules41161CrossRefGoogle Scholar
  5. Tlili, C, Reybier, K, Jaffrezic-Renault, N 2003Fibroblast cells: a sensing bioelement for glucose detection by impedance spectroscopyAnal Chem753340CrossRefGoogle Scholar
  6. Yang, L J, Li, Y B 2005AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7Biosens Bioelectron201407CrossRefGoogle Scholar
  7. Gardner, T J, Frisbie, C D, Wrighton, M S 1995Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronicsJ Am Chem Soc1176927CrossRefGoogle Scholar
  8. Hillebrandt, H, Tanaka, M 2001Electrochemical characterization of self-assembled alkylsiloxane monolayers on indium-tin oxide (ITO) semiconductor electrodesJ Phys Chem B1054270CrossRefGoogle Scholar
  9. Oh, S Y, Yun, Y J, Kim, D Y, Han, S H 1999Formation of a self-assembled monolayer of diaminododecane and a heteropolyacid monolayer on the ITO surfaceLangmuir154960CrossRefGoogle Scholar
  10. Hedges, D H P, Richardson, D J, Russell, D A 2004Electrochemical control of protein monolayers at indium tin oxide surfaces for the reagentless optical biosensing of nitric oxideLangmuir201901CrossRefGoogle Scholar
  11. Yan, C, Zharnikov, M, Golzhauser, A, Grunze, M 2000Preparation and characterization of self-assembled monolayers on indium tin oxideLangmuir166208CrossRefGoogle Scholar
  12. Cai, H, Shang, C, Hsing, I M 2004Sequence-specific electrochemical recognition of multiple species using nanoparticle labelsAnal Chim Acta52361CrossRefGoogle Scholar
  13. Fernandes, M, Vygranenko, Y, Schwarz, R, Vieira, M, Carvalho, C N 2002Photocurrent multiplication in ITO/SiOx/Si optical sensorsVacuum6567CrossRefGoogle Scholar
  14. Zhang, J D, Oyama, M 2005Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxideJ Electroanal Chem577273CrossRefGoogle Scholar
  15. Lee, T M H, Cai, H, Hsing, I M 2005Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detectionAnalyst130364CrossRefGoogle Scholar
  16. Yang, L J, Li, Y B, Erf, G F 2004Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7Anal Chem761107CrossRefGoogle Scholar
  17. Sun, X H, Gillis, K D 2006On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodesAnal Chem782521CrossRefGoogle Scholar
  18. Xu, Y H, Gao, Y, Li, T, Du, Y, Li, J, Wang, E K 2007Highly efficient electrochemiluminescence of functionalized tris(2,2′-bipyridyl)ruthenium(II) and selective concentration enrichment of its coreactantsAdv Funct Mater171003CrossRefGoogle Scholar
  19. Billah M, Hays H C W, Millner P A (2007) Development of a myoglobin impedimetric immunosensor based on mixed self-assembled monolayer onto gold. Microchim Acta DOI: 10.1007/s00604-007-0793-0Google Scholar
  20. Chumbimuni-Torres, K Y, Dai, Z, Rubinova, N, Xiang, Y, Pretsch, E, Wang, J, Bakker, E 2006Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labelsJ Am Chem Soc12813676CrossRefGoogle Scholar
  21. Wilson, M S, Nie, W Y 2006Electrochemical multianalyte immunoassays using an array-based sensorAnal Chem782507CrossRefGoogle Scholar
  22. Li, C Z, Liu, Y L, Luong, J H T 2005Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticlesAnal Chem77478CrossRefGoogle Scholar
  23. Yang, L J, Ruan, C M, Li, Y B 2003Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistanceBiosens Bioelectron19495CrossRefGoogle Scholar
  24. Lillie, G, Payne, P, Vadgama, P 2001Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensingSensor Actuator B78249CrossRefGoogle Scholar
  25. Tang, D P, Yuan, R, Chai, Y Q, Dai, J Y, Zhong, X, Liu, Y 2004A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopyBioelectrochemistry6515CrossRefGoogle Scholar
  26. Gabrielli, C, Hemery, P, Letellier, P, Masure, M, Perrot, H, Rahmi, M I, Turmine, M 2002Investigation of ionic surfactant-selective electrodes by EISElectrochim Acta472117CrossRefGoogle Scholar
  27. Devos, O, Gabrielli, C, Tribollet, B 2006Simultaneous EIS and in situ microscope observation on a partially blocked electrode application to scale electrodepositionElectrochim Acta511413CrossRefGoogle Scholar
  28. Macdonald, J R 1997Accurate fitting of immittance spectroscopy frequency-response data using the stretched exponential modelJ non-cryst solids21295CrossRefGoogle Scholar
  29. Macdonald, J R 2005Impedance spectroscopy: models, data fitting, and analysisSolid state ionics1761961CrossRefGoogle Scholar
  30. Macdonald, J R, Tuncer, E 2007Deconvolution of immittance data: some old and new methodsJ Electroanal Chem602255CrossRefGoogle Scholar
  31. Deslouis, C, Gabrielli, C, Keddam, M, Khalil, A, Rosset, R, Tribollet, B, Zidoune, M 1997Impedance techniques at partially blocked electrodes by scale depositionElectrochim Acta421219CrossRefGoogle Scholar
  32. Xu, D K, Xu, D W, Yu, X B, Liu, Z H, He, W, Ma, Z Q 2005Label-free electrochemical detection for aptamer-based array electrodesAnal Chem775107CrossRefGoogle Scholar
  33. Yu, X B, Xu, D K, Xu, D W, Lv, R, Liu, Z H 2006An impedance biosensor array for label-free detection of multiple antigen-antibody reactionsFront Bioscience11983CrossRefGoogle Scholar
  34. Yu, X B, Lv, R, Ma, Z Q, Liu, Z H, Hao, Y, Li, Q, Xu, D K 2006An impedance array biosensor for detection of multiple antibody-antigen interactionsAnalyst131745CrossRefGoogle Scholar
  35. Wang, J, Xu, D K, Kawde, A N, Polsky, R 2001Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridizationAnal Chem735576CrossRefGoogle Scholar
  36. Dequaire, M, Degrand, C, Limoges, B 2000An electrochemical metalloimmunoassay based on a colloidal gold labelAnal Chem725521CrossRefGoogle Scholar
  37. Chen, H, Jiang, J H, Huang, Y, Deng, T, Li, J S, Shen, G L, Yu, R Q 2006An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complexSensor Actuator B117211CrossRefGoogle Scholar
  38. Prieto, I, Martin, M T, Mobius, D, Camacho, L 1998Electrochemical properties of Langmuir-Blodgett mixed films consisting of a water-soluble porphyrin and a phospholipidJ Phys Chem B1022523CrossRefGoogle Scholar
  39. Lee, T M H, Cai, H, Hsing, I M 2004Gold nanoparticle-catalyzed silver electrodeposition on an indium tin oxide electrode and its application in DNA hybridization transductionElectroanalysis161628CrossRefGoogle Scholar
  40. Thiemann, C, BRett, C M A 2001Electrosynthesis and properties of conducting polymers derived from aminobenzoic acids and from aminobenzoic acids and anilineSynthetic Met1231CrossRefGoogle Scholar
  41. BRett, C M A, Thiemann, C 2002Conducting polymers from aminobenzoic acids and aminobenzenesulphonic acids: influence of pH on electrochemical behaviourJ Electroanal Chem538–539215CrossRefGoogle Scholar
  42. Li, L L, Cai, H, Lee, T M H, Barford, J, Hsing, I M 2004Electrochemical detection of PCR amplicons using electroconductive polymer modified electrode and multiple nanoparticle labelsElectroanalysis1681CrossRefGoogle Scholar
  43. Huang, H Z, Liu, Z G, Yang, X R 2006Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization methodAnal Biochem356208CrossRefGoogle Scholar
  44. Chen, Z P, Jiang, J H, Zhang, X B, Shen, G L, Yu, R Q 2006Amplified electrochemical immunoassay using HRP labeled protein as an inhibitor to silver deposition in the presence of H2O2Chinese Chem Lett17489Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Key Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingP.R. China
  2. 2.Beijing Proteome Research Center, State Key Laboratory of ProteomicsBeijing Institute of Radiation MedicineBeijingP.R. China

Personalised recommendations