Microchimica Acta

, Volume 165, Issue 1–2, pp 79–89 | Cite as

Time resolved sulphur and nutrient distribution in Norway spruce drill cores using ICP-OES

  • Andrea Ulrich
  • Timothée Barrelet
  • Renato Figi
  • Heinz Rennenberg
  • Urs Krähenbühl
Original Paper

Abstract

Methods were developed for detailed dendrochemical studies of low sulphur contents in Norway spruce (Picea abies L. Karst.). This tree species is the dominant conifer species in Northern and Central Europe and therefore predestined for a possible use as an environmental archive. Two independent digestion procedures were investigated with respect to their suitability for element determination and optimised for analysis of the low sulphur content in wood. A modified oxygen bomb combustion procedure and a microwave acid digestion procedure were evaluated with the goal to obtain sufficient detection limits in order to access low concentrated non-metals with an appropriate time resolution. Method development included evaluation of strategies preventing losses of volatile sulphur species. Digestion efficiency was demonstrated by recovery rates for various certified plant standard reference materials (NIST 1572, NIST 1547, RM 8436, BCR 101, NIST 1515, RM 8436, NIST 1573, NIST 1575) as well as self prepared standards with defined low sulphur content of 20 to 200 mg kg−1, which are typical for Norway spruce wood samples. Ultra sonic nebulisation (USN) was evaluated with respect to signal enhancement for sample introduction to inductively coupled plasma optical emission spectrometry (ICP-OES). The optimised procedure was applied to Norway spruce drill cores from locations with different environmental conditions in Switzerland, in order to investigate the anthropogenic impact of sulphur and the suitability of Norway spruce as an environmental archive for sulphur.

Keywords

Norway spruce Tree ring Sulphur Trace elements Oxygen bomb combustion Microwave digestion ICP-OES Plant certified reference material 

Supplementary material

604_2008_101_MOESM1_ESM.doc (48 kb)
ESM 1(DOC 48.5 KB)
604_2008_101_MOESM2_ESM.doc (233 kb)
ESM 2(DOC 233 KB)
604_2008_101_MOESM3_ESM.doc (46 kb)
ESM 3(DOC 46.5 KB)

References

  1. 1.
    Ward NI, Savage JM (1994) Metal dispersion and transportational activities using food crops as biomonitors. Sci Total Environ 147:309–319CrossRefGoogle Scholar
  2. 2.
    Hafez AA, Goyal SS, Rains DW (1991) Quantitative-determination of total sulfur in plant-tissues using acid digestion and ion-chromatography. Agron J 83:148–153Google Scholar
  3. 3.
    Randall PJ, Spencer K (1980) Sulfur-content of plant-material—a comparison of methods of oxidation prior to determination. Commun Soil Sci Plant Anal 11:257–266CrossRefGoogle Scholar
  4. 4.
    Ivanova J, Korhammer S, Djingova R, Heidenreich H, Markert B (2001) Determination of lanthanoids and some heavy and toxic elements in plant certified reference materials by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 56:3–12CrossRefGoogle Scholar
  5. 5.
    Dolgopolova A, Weiss DJ, Seltmann R, Stanley C, Coles B, Cheburkin AK (2004) Closed-vessel microwave digestion technique for lichens and leaves prior to determination of trace elements (Pb, Zn, Cu) and stable Pb isotope ratios. Int J Environ Anal Chem 84:889–899CrossRefGoogle Scholar
  6. 6.
    Levine KE, Ross GT, Fernando RA, Blake JC, Sparacino CM (2004) Trace element content of senna study material and selected senna-based dietary supplements as determined by inductively coupled plasma–optical emission spectrometry and inductively coupled plasma–mass spectrometry. Commun Soil Sci Plant Anal 35:835–851CrossRefGoogle Scholar
  7. 7.
    Poykio R, Peramaki P, Niemela M (2005) The use of Scots pine (Pinus sylvestris L.) bark as a bioindicator for environmental pollution monitoring along two industrial gradients in the Kemi-Tornio area, northern Finland. Int J Environ Anal Chem 85:127–139CrossRefGoogle Scholar
  8. 8.
    Wieberneit N (2001) Einsatz der ICP-Massenspektrometrie zur Multielementbestimmung in biologischen Proben. Ph.D. thesis, University of HamburgGoogle Scholar
  9. 9.
    Wennrich R, Mroczek A, Dittrich K, Werner G (1995) Determination of nonmetals using ICP-AES-techniques. Fresenius J Anal Chem 352:461–469CrossRefGoogle Scholar
  10. 10.
    Zhao F, Mcgrath SP, Crosland AR (1994) Comparison of 3 wet digestion methods for the determination of plant sulfur by inductively-coupled plasma–atomic emission-spectroscopy (ICPAES). Commun Soil Sci Plant Anal 25:407–418CrossRefGoogle Scholar
  11. 11.
    Matusiewicz H, Barnes RM (1985) Tree-ring wood analysis after hydrogen-peroxide pressure decomposition with inductively coupled plasma atomic emission-spectrometry and electrothermal vaporization. Anal Chem 57:406–411CrossRefGoogle Scholar
  12. 12.
    Queirolo F, Valenta P (1987) Trace determination of Cd, Cu, Pb and Zn in annual growth rings by differential pulse anodic-stripping voltammetry. Fresenius Z Anal Chem 328:93–98CrossRefGoogle Scholar
  13. 13.
    Padilla KL Anderson KA (2002) Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere 49:575–585CrossRefGoogle Scholar
  14. 14.
    Gaoming J (1996) Tree analysis for determination of pollution history of Chengde City, North China. J Environ Sci 8:77–85Google Scholar
  15. 15.
    Din-51577 (2001) Testing of mineral oils and fuelsGoogle Scholar
  16. 16.
    Din-51724 (1999) Testing of solid fuels—determination of the sulphur contentGoogle Scholar
  17. 17.
    Barrelet T, Ulrich A, Rennenberg H, Zwicky CN, Krähenbühl U (2008) Assessing the suitability of Norway spruce wood as an environmental archive for sulphur. Environ Pollut (in press) doi:10.1016/j.envpol.2008.05.004
  18. 18.
    Struis RPWJ, Ludwig C, Barrelet T, Krähenbühl U, Rennenberg H (2008) Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. Sci Total Environ 403(1–3):196–206 (15 September 2008)Google Scholar
  19. 19.
    Schweingruber FH (1990) Radiodensitometry. In: Cook ER, Kairukstis LA (eds) Methods of dendrochronology, applications in environmental sciences. Kluwer Academic, Dordrecht, pp 55–63Google Scholar
  20. 20.
    Din 51577-5 (2001) Testing of mineral oils and fuels—determination of the chlorine and bromine content—part 5: direct determination by optical emission spectral analysis with inductively coupled plasma (ICP OES)Google Scholar
  21. 21.
    Jeker P, Krähenbühl U (2001) Sulfur profiles of the twentieth century in peat bogs of the Swiss midlands measured by ICP-OES and by IC. Chimia 55:1029–1032Google Scholar
  22. 22.
    Ulrich A, Barrelet T, Krähenbühl U (2007) Spatially resolved plant physiological analysis using LA-HR-ICP-MS. Chimia 61:111–111CrossRefGoogle Scholar
  23. 23.
    Ihnat M, Dabeka RW, Wolynetz MS (1994) Preparation and homogeneity characterization of 10 agricultural food reference materials for elemental composition. Fresenius J Anal Chem 348:445–451CrossRefGoogle Scholar
  24. 24.
    Markert B, Reus U, Herpin U (1994) The application of TXRF in instrumental multielement analysis of plants, demonstrated with species of moss. Sci Total Environ 152:213–220CrossRefGoogle Scholar
  25. 25.
    Jonah SA, Williams IS (2000) Nutrient elements of commercial tea from Nigeria by an instrumental neutron activation analysis technique. Sci Total Environ 258:205–208CrossRefGoogle Scholar
  26. 26.
    Poykio R, Torvela H, Peramaki P, Kuokkanen T, Ronkkomaki H (2000) Comparison of dissolution methods for multi-element analysis of some plant materials used as bioindicator of sulphur and heavy metal deposition determined by ICP-AES and ICP-MS. Analusis 28:850–854CrossRefGoogle Scholar
  27. 27.
    Poykio R, Peramaki P (2003) Acid dissolution methods for heavy metals determination in pine needles. Environ Chem Lett 1:191–195CrossRefGoogle Scholar
  28. 28.
    Stephens WE, Calder A (2004) Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry. Analytica Chimica Acta 527:89–96CrossRefGoogle Scholar
  29. 29.
    Yamashita CI, Saiki M, Vasconcellos MBA, Sertie JAA (2005) Characterization of trace elements in Casearia medicinal plant by neutron activation analysis. Appl Radiat Isotopes 63:841–846CrossRefGoogle Scholar
  30. 30.
    Foyer C, Rennenberg H (2000) Regulation of glutathione synthesis and its role in abiotic and biotic stress defense. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects. Paul Hauptpp, Bern, pp 127–153Google Scholar
  31. 31.
    Schurmann P (1993) Plant thioredoxins. In: De Kok LJ, Stulen I, Rennenberg H, Brunold Ch, Rauser W (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Acad, The Hague, pp 153–162Google Scholar
  32. 32.
    Rennenberg H, Polle H (1994) Metabolic consequences of atmospheric sulphur influx into plants. In: Wellburn A, Alscher R (eds) Plant responses to the gaseous environment. Chapman and Hall, London, pp 165–180Google Scholar
  33. 33.
    Noji M, Saito M, Aono M, Saji H, Saito K (2000) Modulation of cysteine biosynthesis and resistance to SO2 in transgenic tobacco overexpressing cysteine synthase in cytosol and chloroplasts. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects. Paul Haupt, Bern, pp 289–290Google Scholar
  34. 34.
    Rennenberg H (1984) The fate of excess sulfur in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 35:121–153CrossRefGoogle Scholar
  35. 35.
    Schupp R, Schatten T, Willenbrink J, Rennenberg H (1992) Long-distance transport of reduced sulfur in spruce (Picea-abies L). J Exp Bot 43:1243–1250CrossRefGoogle Scholar
  36. 36.
    Schneider A, Schatten T, Rennenberg H (1994) Exchange between phloem and xylem during long-distance transport of glutathione in spruce trees (Picea-abies [Karst] L). J Exp Bot 45:457–462CrossRefGoogle Scholar
  37. 37.
    Ulrich B, Mayer R, Khanna PK (1979) Loading of chemical-elements in precipitation at the solling. Z Pflanzenernahr Bodenkd 142:601–615CrossRefGoogle Scholar
  38. 38.
    EMPA (2000). Technical report of the national air pollution monitoring network (NABEL), www.empa.ch.
  39. 39.
    Buwal/Safel (1995) Vom Menschen verursachte Luftschadstoffemissinen in der Schweiz von 1900 bis 2010, BUWAL Schriftenreihe Umwelt, 256Google Scholar
  40. 40.
    Schreier R (2005) Studies on past climatic and environmental changes by chemical investigations of peat cores from Upper Engadine (Swiss alpine area). Ph.D. thesis, University of Bern.Google Scholar
  41. 41.
    Barrelet T, Ulrich A, Rennenberg H, Krähenbühl U (2006) Seasonal profiles of sulphur, phosphorus, and potassium in Norway spruce wood. Plant Biol 8:462–469CrossRefGoogle Scholar
  42. 42.
    Cutter BE, Guyette RP (1993) Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. J Environ Qual 22:611–619CrossRefGoogle Scholar
  43. 43.
    Ostrofsky A, Jellison J, Smith KT, Shortle WC (1997) Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi. Can J For Res 27:567–571CrossRefGoogle Scholar
  44. 44.
    Timell T (1986) Compression wood in gymnosperms, Vol. 1, 2, and 3.. Springer, Berlin and New YorkGoogle Scholar
  45. 45.
    Witte KM, Wanty RB, Ridley WI (2004) Engelmann spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Appl Geochem 19:1367–1376CrossRefGoogle Scholar
  46. 46.
    Kauneliene V, Mosback H, Ceburnis D, Spokauskiene D (1999) Use of bark of Scots pine for bio-monitoring of airborne pollutant deposition. Environ Chem Phys 21:43–50Google Scholar
  47. 47.
    Herschbach C, Van Der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124:461–473CrossRefGoogle Scholar
  48. 48.
    Walkenhorst A, Hagemeyer J (1997) Distribution of Cd, Pb, and Zn in above ground parts of a 55-year-old spruce tree (Picea abies [L.] Karst.). J Appl Bot 71:164–167Google Scholar
  49. 49.
    Hagemeyer J, Lohrie K (1995) Distribution of Cd and Zn in annual xylem rings of young spruce trees [Picea-Abies (L) Karst] grown in contaminated soil. Trees 9:195–199Google Scholar
  50. 50.
    Intergovernmental Panal on Climate Change (IPCC) (2007) Climate change 2007, 4th IPCC Assessment Report, http://www.ipcc.ch/

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Ulrich
    • 1
  • Timothée Barrelet
    • 1
    • 2
    • 4
  • Renato Figi
    • 1
  • Heinz Rennenberg
    • 3
  • Urs Krähenbühl
    • 4
  1. 1.Analytical ChemistrySwiss Federal Institute for Materials Science and Technology (EMPA)DübendorfSwitzerland
  2. 2.Swiss Federal Office of Public Health (FOPH)BerneSwitzerland
  3. 3.Institute of Forest Botany and Tree PhysiologyUniversity of FreiburgFreiburgGermany
  4. 4.Department for Chemistry and BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations