Advertisement

Microchimica Acta

, Volume 164, Issue 3–4, pp 465–470 | Cite as

Application of a renewable silver based mercury film electrode to the determination of Cr(VI) in soil samples

  • Malgorzata GrabarczykEmail author
  • Bogusław Baś
  • Mieczysław Korolczuk
Original Paper

Abstract

The design and experimental results of the application of a renewable mercury film silver based electrode to the determination of Cr(VI) in soil samples are presented. The main feature of this procedure is that it can be used in field measurements. The procedure is based on the extraction of total Cr(VI) exploiting the complexation property of diethylenetriaminepentaacetic acid (DTPA) followed by electrochemical reduction of Cr(VI) to Cr(III) with the formation of Cr(III)-H2DTPA complex adsorbed on mercury film electrode. The voltammetric signal is caused by reduction of this complex. The validation of the proposed procedure was made by Cr(VI) determination in the certified reference material “Chromium VI in soil”. The protocol for Cr(VI) determination has also been applied to the analysis of Rendoll soil samples with satisfying precision.

Keywords

Cr(VI) determination Soil samples Field measurements 

References

  1. 1.
    Manova A, Humenikova S, Strelec M, Beinrohr E (2007) Determination of chromium(VI) and total chromium in water by in-electrode coulometric titration in a porous glassy carbon electrode. Microchim Acta 159:41CrossRefGoogle Scholar
  2. 2.
    Vercoutere K, Cornelis R, Dyg S, Mees L, Christensen JM, Byrialsen K, Aaen B, Quevauviller P (1996) Cr(III) and Cr(VI) speciation measurements in environmental reference materials. Microchim Acta 123:109CrossRefGoogle Scholar
  3. 3.
    Paneli M, Voulgaropoulos AV, Kalcher K (1993) The catalytic adsorptive stripping voltammetric determination of chromium with TTHA and nitrate. Microchim Acta 110:205CrossRefGoogle Scholar
  4. 4.
    Boussemart M, van den Berg CMG, Ghaddaf M (1992) The determination of the chromium speciation in sea water using catalytic cathodic stripping voltammetry. Anal Chim Acta 262:103CrossRefGoogle Scholar
  5. 5.
    Golimowski J, Valenta P, Nürnberg HW (1985) Trace determination of chromium in various water types by adsorption differential pulse voltammetry. Fresenius Z Anal Chem 322:315CrossRefGoogle Scholar
  6. 6.
    Li Y, Xue H (2001) Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal Chim Acta 448:121CrossRefGoogle Scholar
  7. 7.
    Farghaly OA (2004) A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode. Talanta 63:497CrossRefGoogle Scholar
  8. 8.
    Dobney AM, Greenway GM (1994) On-line determination of chromium by adsorptive cathodic stripping voltammetry. Analyst 119:293CrossRefGoogle Scholar
  9. 9.
    Lin L, Lawrence NS, Thongngamdee S, Wang J, Lin Y (2005) Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta 65:144CrossRefGoogle Scholar
  10. 10.
    Grabarczyk M (2008) Simultaneous extraction and catalytic adsorptive stripping voltammetric measurement of Cr(VI) in solid samples. J Hazard Mater. doi: 10.1016/j.jhazmat.2008.01.097
  11. 11.
    Baś B, Kowalski Z (2002) Preparation of silver surface for mercury film electrode of prolonged analytical application. Electroanalysis 14:1067CrossRefGoogle Scholar
  12. 12.
    Baś B (2006) Renewable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry. Anal Chim Acta 570:195CrossRefGoogle Scholar
  13. 13.
    Piech R, Baś B, Kubiak WW (2008) The cyclic renewable mercury film silver based electrode for determination of molybdenum(VI) traces using adsorptive stripping voltammetry. Talanta 76:295CrossRefGoogle Scholar
  14. 14.
    Piech R, Baś B, Kubiak WW (2008) The cyclic renewable mercury film silver based electrode for determination of manganese(II) traces using anodic stripping voltammetry. J Electroanal Chem. doi: 101016/j.jelechem.2008.04.008
  15. 15.
    Piech R, Baś B, Kubiak WW (2007) The cyclic renewable mercury film silver based electrode for determination of uranium(VI) traces using adsorptive stripping voltammetry. Electroanalysis 19:2342CrossRefGoogle Scholar
  16. 16.
    Kapturski P, Bobrowski A (2008) The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel. J Electroanal Chem 617:1CrossRefGoogle Scholar
  17. 17.
    Vitale RJ, Mussoline GR, Rinehimer KA, Petura JC, James BR (1997) Extraction of sparingly soluble chromate from soils: evaluation of methods and E h–pH effects. Environ Sci Technol 31:390CrossRefGoogle Scholar
  18. 18.
    Rahman GMM, Kingston HMS, Towns TG, Vitale RJ, Clay KR (2005) Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials. Anal Bioanal Chem 382:1111CrossRefGoogle Scholar
  19. 19.
    Yang L, Ciceri E, Mester Z, Sturgeon RE (2006) Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast. Anal Bioanal Chem 386:1673CrossRefGoogle Scholar
  20. 20.
    Tirez K, Scharf H, Calzolari D, Cleven R, Kisser M, Lück D (2007) Validation of a European standard for the determination of hexavalent chromium in solid material. J Environ Monit 9:749CrossRefGoogle Scholar
  21. 21.
    Occupational Safety and Health Administration (OSHA) US Department of Labor, Washington, DC (1998) Inorganic Method 215Google Scholar
  22. 22.
    James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Hexavalent chromium extraction from soils: a comparison of five methods. Environ Sci Technol 29:2377CrossRefGoogle Scholar
  23. 23.
    Grabarczyk M, Korolczuk M, Tyszczuk K (2006) Extraction and determination of hexavalent chromium in soil samples. Anal Bioanal Chem 386:357CrossRefGoogle Scholar
  24. 24.
    Ashley K, Howe AM, Demange M, Nygren O (2003) Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. J Environ Monit 5:707CrossRefGoogle Scholar
  25. 25.
    Ishiguro M, Tan W, Koopal LK (2007) Binding of cationic surfactants to humic substances. Colloid Surf A 306:29CrossRefGoogle Scholar
  26. 26.
    Lippold H, Gottschalch U, Kupsch H (2008) Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere 70:1979CrossRefGoogle Scholar
  27. 27.
    Korolczuk M, Grabarczyk M (2005) Evaluation of ammonia buffer containing EDTA as an extractant for Cr(VI) from solid samples. Talanta 66:1320CrossRefGoogle Scholar
  28. 28.
    Polish Patent No. P-319 984 1997Google Scholar
  29. 29.
    Fukushima M, Kikuchi A, Tatsumi K, Tanaka F (2006) Separation of fulvic acid from soil extracts based on ion-pair formation with a cationic surfactant. Anal Sci 22:229CrossRefGoogle Scholar
  30. 30.
    Filipe OMS, Vidal MM, Duarte AC, Santos EBH (2007) A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high concentrations of humic substances. Talanta 72:1235CrossRefGoogle Scholar
  31. 31.
    Janos P (2003) Separation methods in the chemistry of humic substances. J Chromatogr A 983:1CrossRefGoogle Scholar
  32. 32.
    Grabarczyk M (2008) A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances. Anal Bioanal Chem 390:979CrossRefGoogle Scholar
  33. 33.
    Grabarczyk M, Korolczuk M (2003) Modification of catalytic adsorptive stripping voltammetric method of hexavalent chromium determination in the presence of DTPA and nitrate. Anal Bioanal Chem 376:1115CrossRefGoogle Scholar
  34. 34.
    Namieśnik J, Zygmunt B (1999) Role of reference materials in analysis of environmental pollutants. Sci Total Environ 228:243CrossRefGoogle Scholar
  35. 35.
    Korolczuk M (2000) How faster and cheaper to determine chromium by adsorptive cathodic stripping voltammetry in the presence of DTPA and nitrite. Fresenius J Anal Chem 367:761CrossRefGoogle Scholar
  36. 36.
    Wang J, Ashley K, Marlow D (1999) Field method for the determination of hexavalent chromium by ultrasonication and strong anion-exchange solid-phase extraction. Anal Chem 71:1027CrossRefGoogle Scholar
  37. 37.
    Samanta G, Boring CB, Desgupta (2001) Continuous automated measurement of hexavalent chromium in airborne particulate matter. Anal Chem 73:2034CrossRefGoogle Scholar
  38. 38.
    Hazelwood KJ, Drake PL, Ashley K, Marcy D (2004) Field method for the determination of insoluble or total hexavalent chromium in workplace air. J Occup Environ Hyg 1:613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Malgorzata Grabarczyk
    • 1
    Email author
  • Bogusław Baś
    • 2
  • Mieczysław Korolczuk
    • 1
  1. 1.Faculty of ChemistryMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations