Advertisement

Microchimica Acta

, Volume 164, Issue 3–4, pp 453–458 | Cite as

Ultrasensitive determination of Cu2+ by synchronous fluorescence spectroscopy with functional nanoparticles

  • Hong-Qi Chen
  • A-Ni Liang
  • Lun WangEmail author
  • Yan Liu
  • Bin-Bin Qian
Original Paper

Abstract

A new synchronous fluorescence method was developed for the rapid determination of Cu2+ with functional CdS nanoparticles as a probe, based on the fluorescence quenching of functional CdS. The synchronous fluorescence peak is located at 304 nm, scanning with excitation and emission wavelengths of 255 and 460 nm (Δλ = λ em ‑ λ ex = 205 nm), respectively. Under optimum conditions, a linear relationship was found between the relative synchronous fluorescence intensity and the concentration of Cu2+ in the range 0.09 to 27.0 μg L−1. The limit of detection was 3.2 ng L−1. Compared with other general fluorescent methods for the determination of Cu2+, the proposed method had a wider linear range and improved sensitivity. The quenching mechanism has also been discussed. Moreover, analytical application of the method was successfully demonstrated by analysis water samples.

Keywords

Synchronous fluorescence Trace Cu2+ determination Nanoparticles 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (20575001) and the Education Commission Natural Science Foundation of Anhui Province (KJ2007B166).

Supplementary material

604_2008_82_MOESM1_ESM.doc (37 kb)
Table S1 Effect of other ions (DOC 37 KB)

References

  1. 1.
    Wong BS, Venien-Bryan C, Williamson RA, Burton DR, Gambetti P, Sy MS, Brown DR, Jones IM (2000) Copper refolding of prion protein. Biochem Biophys Res Commun 276:1217CrossRefGoogle Scholar
  2. 2.
    Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) The octarepeat domain of the prion protein binds Cu (II) with three distinct coordination modes at pH 7.4. J Am Chem Soc 127:12647CrossRefGoogle Scholar
  3. 3.
    Thompsett AR, Brown DR (2007) Dual polarisation interferometry analysis of copper binding to the prion protein: evidence for two folding states. Biochim Biophys Acta 1774:920Google Scholar
  4. 4.
    High B, Bruce D, Richter MM (2001) Determining copper ions in water using electrochemiluminescence. Anal Chim Acta 449:17CrossRefGoogle Scholar
  5. 5.
    Xiang Y, Li ZF, Chen XT, Tong AJ (2008) Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74:1148CrossRefGoogle Scholar
  6. 6.
    Afzali D, Mostafavi A, Taher MA, Moradian A (2007) Flame atomic absorption spectrometry determination of trace amounts of copper after separation and preconcentration onto TDMBAC-treated analcime pyrocatechol-immobilized. Talanta 71:971CrossRefGoogle Scholar
  7. 7.
    Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272CrossRefGoogle Scholar
  8. 8.
    Chan MS, Huang SD (2000) Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector. Talanta 51:373CrossRefGoogle Scholar
  9. 9.
    Li BX, Wang DM, Lv JG, Zhang ZJ (2006) Flow-injection chemiluminescence simultaneous determination of cobalt (II) and copper (II) using partial least squares calibration. Talanta 69:160CrossRefGoogle Scholar
  10. 10.
    Coale KH, Johnson KS, Stout PM, Skakamoto CM (1992) Determination of copper in seawater using a flow-injection method with chemiluminesence detection. Anal Chim Acta 266:345CrossRefGoogle Scholar
  11. 11.
    Zamaow H, Coale KH, Johnson KS, Sakamoto CM (1998) Determination of copper complexation seawater using flow injection analysis with chemiluminesence detection. Anal Chim Acta 377:133CrossRefGoogle Scholar
  12. 12.
    Collado-Sanchez C, Perez-Pena J, Gelado-Caballero MD, Herrera-Melian JA, Hernadez-Brito JJ (1996) Rapid determination of copper, lead and cadmium in unpurged seawater by adsorptive stripping voltammetry. Anal Chim Acta 320:19CrossRefGoogle Scholar
  13. 13.
    Takeuchi RM, Santos AL, Padilha PM, Stradiotto NR (2007) Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica. Talanta 71:771CrossRefGoogle Scholar
  14. 14.
    Freire RS, Kubota LT (2004) Application of self-assembled monolayer-based electrode for voltammetric determination of copper. Electrochim Acta 49:3795CrossRefGoogle Scholar
  15. 15.
    Mohadesi A, Taher MA (2007) Voltammetric determination of Cu (II) in natural waters and human hair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Talanta 72:95CrossRefGoogle Scholar
  16. 16.
    Hassan SSM, Elnemma EM, Mohamed AHK (2005) Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta 66:1034CrossRefGoogle Scholar
  17. 17.
    Chow CWK, Kolev SD, Davey DE, Mulcahy DE (1996) Determination of copper in natural water by batch and oscillating flow injection stripping potentiometry. Anal Chim Acta 330:79CrossRefGoogle Scholar
  18. 18.
    Wu J, Boyle E (1997) A low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. Anal Chem 69:2464CrossRefGoogle Scholar
  19. 19.
    Teixeira LSG, Reis JON, Costa ACS, Ferreira SLC, Korn MGA, Andrade JB (1998) ICP-AES determination of small amounts of zinc in copper-base alloys after separation by adsorption of the zinc–TAN complex on Sep Pak C18 cartridges. Talanta 46:1279CrossRefGoogle Scholar
  20. 20.
    Chen YF, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132CrossRefGoogle Scholar
  21. 21.
    Zeng HH, Thompson RB, Maliwal BP, Fones GR, Moffett JW, Fierke CA (2003) Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal Chem 75:6807CrossRefGoogle Scholar
  22. 22.
    Fernández-Argüelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu in aqueous solutions by luminescent measurements. Anal Chim Acta 549:20CrossRefGoogle Scholar
  23. 23.
    Shao N, Zhang Y, Cheung SM, Yang RH, Chan WH, Mo T, Li KA, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294CrossRefGoogle Scholar
  24. 24.
    Chen B, Zhong P (2005) A new determining method of copper ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986CrossRefGoogle Scholar
  25. 25.
    Zheng YJ, Orbulescu J, Ji XJ, Andreopoulos FM, Pham SM, Leblanc RM (2003) Development of fluorescent film sensors for the detection of divalent copper. J Chem Soc 125:2680CrossRefGoogle Scholar
  26. 26.
    Mei L, Xiang Y, Li N, Tong AJ (2007) A new fluorescent probe of rhodamine B derivative for the detection of copper ion. Talanta 72:171CrossRefGoogle Scholar
  27. 27.
    Lloyd JBF (1971) Synchronized excitation of fluorescence emission spectra. Nature Phys Sci 231:64Google Scholar
  28. 28.
    Vo-Dinh T (1978) Multicomponent analysis by synchronous luminescence spectrometry. Anal Chem 50:396CrossRefGoogle Scholar
  29. 29.
    Vo-Dinh T, Gammage RB, Hawthorne AR, Thorngate JH (1978) Synchronous spectroscopy for analysis of polynuclear aromatic compounds. Anal Chem 12:1297Google Scholar
  30. 30.
    Gattás-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper (II) and silver (I). Chem Commun 21:2684CrossRefGoogle Scholar
  31. 31.
    Isarov AV, Chrysochoos J (1997) Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) Ions. Langmuir 13:3142CrossRefGoogle Scholar
  32. 32.
    Hiisselbartb A, EychmiiUer A, Eicbberger R, Giersig M, Mews A, Weller H (1993) Chemistry and photophysics of mixed CdS/HgS colloids. J Phys Chem 97:5333CrossRefGoogle Scholar
  33. 33.
    Bailey BW, Dagnall RM, West TS (1966) Analytical applications of ternary complexes—III: a spectrofluorimetric method for the determination of submicrogram amounts of copper. Talanta 13:1661CrossRefGoogle Scholar
  34. 34.
    Kawakubo S, Kato H, Watsuki MI (1994) Catalytic spectrofluorimetric determination of copper using aerial oxidation of ascorbic acid in the presence of o-phenylenediamine. Analyst 119:2119CrossRefGoogle Scholar
  35. 35.
    Cao QE, Wang KT, Hu ZD, Xu QH (1998) Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper (II). Talanta 47:921CrossRefGoogle Scholar
  36. 36.
    Cano-Raya C, Ramos MDF, Vallvey LFC, Wolfbeis OS, Schaferling M (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper (II) and other metal ions. Appl Spectrosc 59(10):1209CrossRefGoogle Scholar
  37. 37.
    Xie HY, Liang JG, Zhang ZL, Liu Y, He ZK, Pang DW (2004) Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta Part A 60:2527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hong-Qi Chen
    • 1
  • A-Ni Liang
    • 1
  • Lun Wang
    • 1
    Email author
  • Yan Liu
    • 1
  • Bin-Bin Qian
    • 1
  1. 1.Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations