Advertisement

Microchimica Acta

, 164:7 | Cite as

Luminescent nanobeads for optical sensing and imaging of dissolved oxygen

Original Paper

Abstract

A variety of luminescent oxygen nanosensors were prepared by addressable staining of poly(styrene-block-vinylpyrrolidone) nanobeads with metal–ligand complexes whose luminescence is quenched by oxygen. They display optimal sensitivity in responding to dissolved oxygen in concentrations from 0 to 100% air saturation. The nanobeads based on cyclometallated iridium(III) complexes with coumarins are especially promising due to excellent brightnesses. The nanosensors respond virtually in real time to altering oxygen concentration and are capable of recording even very rapid changes in oxygen partial pressure. Signals are obtained by determination of luminescence lifetime in the frequency domain and in the time domain, and by ratiometric measurement of luminescence intensity. The nanosensors have been applied to sensing and imaging of dissolved oxygen, to monitor the consumption of oxygen during enzymatic oxidation of glucose, and to monitoring dissolved oxygen in a growing culture of E. coli.

Keywords

Optical sensor Oxygen Nanobeads Imaging Luminescence 

References

  1. 1.
    Papkovsky DB, O’Riordan TC (2005) Emerging applications of phosphorescent metalloporphyrins. J Fluoresc 15:569CrossRefGoogle Scholar
  2. 2.
    Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 72:346CrossRefGoogle Scholar
  3. 3.
    Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. J Biotechnol 122:293CrossRefGoogle Scholar
  4. 4.
    John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81:829CrossRefGoogle Scholar
  5. 5.
    Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KH (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243CrossRefGoogle Scholar
  6. 6.
    Hanson MA, Ge X, Kostov Y, Brorson KA, Moreira AR, Rao G (2007) Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture. Biotechnol. Bioeng 97:833CrossRefGoogle Scholar
  7. 7.
    Mehta G, Mehta K, Sud D, Song JW, Bersano-Begey T, Futai N, Heo YS, Mycek MA, Linderman JJ, Takayama S (2007) Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9:123CrossRefGoogle Scholar
  8. 8.
    Alderman J, Hynes J, Floyd SM, Kruger J, O’Connor R, Papkovsky DB (2004) A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens Bioelectron 19:1529CrossRefGoogle Scholar
  9. 9.
    Schmaelzlin E, van Dongen JT, Klimant I, Marmodee B, Steup M, Fisahn J, Geigenberger P, Loehmannsroeben H-G (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339CrossRefGoogle Scholar
  10. 10.
    Cao Y, Koo Y-EL, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129:745CrossRefGoogle Scholar
  11. 11.
    Gouin JF, Baros F, Birot D, Andre JC (1997) A fiber-optic oxygen sensor for oceanography. Sens Actuators B 39:401CrossRefGoogle Scholar
  12. 12.
    Klimant I, Meyer V, Kuhl M (1995) Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159Google Scholar
  13. 13.
    Hasumoto H, Imazu T, Miura T, Kogure K (2006) Use of an optical oxygen sensor to measure dissolved oxygen in seawater. J Oceanogr 62:99CrossRefGoogle Scholar
  14. 14.
    Koenig B, Kohls O, Holst G, Glud RN, Kuehl M (2005) Fabrication and test of sol-gel based planar oxygen optodes for use in aquatic sediments. Mar Chem 97:262CrossRefGoogle Scholar
  15. 15.
    Schroeder CR, Polerecky L, Klimant I (2007) Time-resolved pH/pO2 mapping with luminescent hybrid sensors. Anal Chem 79:60CrossRefGoogle Scholar
  16. 16.
    Meruva RC, Meyerhoff ME (1998) Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide. Biosens Bioelectron 13:201CrossRefGoogle Scholar
  17. 17.
    Schmaelzlin E, Walz B, Klimant I, Schewe B, Loehmannsroeben H-G (2006) Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, Calliphora vicina, by use of luminescent microbeads. Sens Actuators B 119:251CrossRefGoogle Scholar
  18. 18.
    Babilas P, Liebsch G, Schacht V, Klimant I, Wolfbeis OS, Szeimies R-M, Abels C (2005) In vivo phosphorescence imaging of pO2 using planar oxygen sensors. Microcirculation 12:477CrossRefGoogle Scholar
  19. 19.
    Kimura S, Matsumoto K, Mineura K, Itoh T (2007) Cerebral oxygen metabolism in idiopathic-normal pressure hydrocephalus. J Neurol Sci 258:60CrossRefGoogle Scholar
  20. 20.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657CrossRefGoogle Scholar
  21. 21.
    Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:1CrossRefGoogle Scholar
  22. 22.
    Koo Y-EL, Cao Y, Kopelman R, Koo SM, Brasuel M, Philbert MA (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498CrossRefGoogle Scholar
  23. 23.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol–gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73:4124CrossRefGoogle Scholar
  24. 24.
    Borisov SM, Mayr T, Klimant I (2008) Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573CrossRefGoogle Scholar
  25. 25.
    Klimant I, Wolfbeis OS (1995) Oxygen-sensitive luminescent materials based on silicone-soluble ruthenium diimine complexes. Anal Chem 67:3160CrossRefGoogle Scholar
  26. 26.
    Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501CrossRefGoogle Scholar
  27. 27.
    Koese ME, Carrol BF, Schanze KS (2005) Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films. Langmuir 21:9121CrossRefGoogle Scholar
  28. 28.
    Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R (2005) Ratiometric fiber optic sensors for the detection of inter- and intra-cellular dissolved oxygen. J Mater Chem 15:2913CrossRefGoogle Scholar
  29. 29.
    Mills A, Lepre A (1997) Controlling the response characteristics of luminescent porphyrin plastic film sensors for oxygen. Anal Chem 69:4653CrossRefGoogle Scholar
  30. 30.
    Papkovsky DV, Ponomarev GV, Trettnak W, O’Leary P (1995) Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal Chem 67:4112CrossRefGoogle Scholar
  31. 31.
    Hartmann P, Trettnak W (1996) Effects of polymer matrixes on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes. Anal Chem 68:2615CrossRefGoogle Scholar
  32. 32.
    Khalil G, Gouterman M, Ching S, Costin C, Coyle L, Gouin S, Green E, Sadilek M, Wan R, Yearyean J, Zelelow B (2002) Synthesis and spectroscopic characterization of Ni, Zn, Pd and Pt tetra(pentafluorophenyl)porpholactone with comparisons to Mg, Zn, Y, Pd and Pt metal complexes of tetra(pentafluorophenyl)porphine. J Porphyrins Phthalocyanines 6:135CrossRefGoogle Scholar
  33. 33.
    Khalil GE, Costin C, Crafton J, Jones G, Grenoble S, Gouterman M, Callis JB, Dalton LR (2004) Dual-luminophor pressure-sensitive paint I. Ratio of reference to sensor giving a small temperature dependency. Sens Actuators B 97:13CrossRefGoogle Scholar
  34. 34.
    McEvoy A, McDonagh C, MacGraith B (1997) Optimization of sol–gel-derived silica films for optical oxygen sensing. J Sol-Gel Sci Technol 8:1121Google Scholar
  35. 35.
    Rosenzweig Z, Kopelman R (1995) Development of a submicrometer optical fiber oxygen sensor. Anal Chem 67:2650CrossRefGoogle Scholar
  36. 36.
    Roche P, Al-Jowder R, Narayanaswamy R, Young J, Scully P (2006) A novel luminescent lifetime-based optrode for the detection of gaseous and dissolved oxygen utilising a mixed ormosil matrix containing ruthenium (4,7-diphenyl-1,10-phenanthroline)3Cl2 (Ru.dpp). Anal Bioanal Chem 386:1245CrossRefGoogle Scholar
  37. 37.
    DeRosa MC, Mosher PJ, Yap GPA, Focsaneanu KS, Crutchley RJ, Evans CEB (2003) Synthesis, characterization, and evaluation of [Ir(ppy)2(vpy)Cl] as a polymer-bound oxygen sensor. Inorg Chem 42:4864CrossRefGoogle Scholar
  38. 38.
    Alford PC, Cook MJ, Lewis AP, McAuliffe SG, Skarda V, Thomson AJ (1985) Luminescent metal complexes. Part 5. Luminescence properties of ring-substituted 1,10-phenanthroline tris-complexes of ruthenium(II). J Chem Soc Perkin Trans II 5:705CrossRefGoogle Scholar
  39. 39.
    Lee S-K, Okura I (1997) Photostable optical oxygen sensing material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene. Anal Commun 34:185CrossRefGoogle Scholar
  40. 40.
    Carraway ER, Demas JN, DeGraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337CrossRefGoogle Scholar
  41. 41.
    Sacksteder L, Demas JN, DeGraff BA, Bacon JR (1993) Design of oxygen sensors based on quenching of luminescent metal complexes: effect of ligand size on heterogeneity. Anal Chem 65:3480CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry and RadiochemistryUniversity of Technology GrazGrazAustria

Personalised recommendations