Microchimica Acta

, Volume 164, Issue 1–2, pp 77–83 | Cite as

Headspace single-drop microextraction with in situ stibine generation for the determination of antimony (III) and total antimony by electrothermal-atomic absorption spectrometry

  • Francisco Pena-Pereira
  • Isela Lavilla
  • Carlos Bendicho
Original Paper

Abstract

A headspace-single drop microextraction method combined with electrothermal atomic absorption spectrometry (ETAAS) is developed for the extraction and preconcentration of antimony(III) and total antimony into a Pd(II)-containing aqueous drop after hydride generation. Experimental variables such as hydrochloric acid and sodium tetrahydroborate concentrations, sample volume, Pd(II) concentration in the acceptor phase and microextraction time were optimized. A 26-2 IV factorial fractional design was initially used for screening the effect of the variables, followed by an univariate approach. The method showed a great freedom from interferences caused by hydride-forming elements and transition metals. The detection limit of Sb(III) was 25 pg mL−1. A preconcentration factor of 176 is achieved in 3 min. The repeatability, expressed as relative standard deviation, was 4.7%. The method was validated against two certified reference materials (NWRI-TM 27.2 and NIST 2711) and applied to the determination of Sb(III) and total Sb in waters.

Keywords

Sb(III) and total Sb Hydride generation Headspace-single drop microextraction Environmental samples Electrothermal-AAS 

Notes

Acknowledgements

The financial support from the Spanish Education and Science Ministry (project CTQ2006-04111/BQU) and the Galician government (Xunta de Galicia) (project PGIDIT05PXIB31401PR) is gratefully acknowledged.

Supplementary material

604_2008_36_MOESM1_ESM.pdf (39 kb)
ESM Supplementary section (PDF 40 KB)

References

  1. 1.
    Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters—I. Occurrence. Earth Sci Rev 57:125CrossRefGoogle Scholar
  2. 2.
    Donard OFX, Caruso JA (1998) Trace metal and metalloid species determination: evolution and trends. Spectrochim Acta Part B 53:157CrossRefGoogle Scholar
  3. 3.
    Council of the European Communities (1998) Council Directive Relating to the Quality of Water Intended for Human Consumption (98/83/CE)Google Scholar
  4. 4.
    Trivelin LA, Rodrigues Rohwedder JJ, Rath S (2006) Determination of pentavalent antimony in antileishmaniotic drugs using an automated system for liquid–liquid extraction with on-line detection. Talanta 68:1536CrossRefGoogle Scholar
  5. 5.
    Zhang L, Morita Y, Sakuragawa A, Isozaki A (2007) Inorganic speciation of As(III,V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta 72:723CrossRefGoogle Scholar
  6. 6.
    Feng Y-L, Narasaki H, Chen H-Y, Tian L-C (1999) Speciation of antimony(III) and antimony(V) using hydride generation inductively coupled plasma atomic emission spectrometry combined with the rate of pre-reduction of antimony. Anal Chim Acta 386:297CrossRefGoogle Scholar
  7. 7.
    Cabon JY, Madec CL (2004) Determination of major antimony species in seawater by continuous flow injection hydride generation atomic absorption spectrometry. Anal Chim Acta 504:209CrossRefGoogle Scholar
  8. 8.
    Semenova NV, Leal LO, Forteza R, Cerdà V (2005) Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Anal Chim Acta 530:113CrossRefGoogle Scholar
  9. 9.
    Li Y, Hu B, Jiang Z (2006) On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal Chim Acta 576:207CrossRefGoogle Scholar
  10. 10.
    Bosch Ojeda C, Sánchez Rojas F, Cano Pavón JM, Terrer Martín L (2005) Use of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel for automated preconcentration and selective determination of antimony(III) by flow injection electrothermal atomic absorption spectrometry. Anal Bioanal Chem 382:513CrossRefGoogle Scholar
  11. 11.
    Craig PJ, Sergeeva T, Jenkins RO (2001) Determination of inorganic Sb(V) and methylantimony species by HPLC with hydride generation-atomic fluorescence spectrometric detection. Mikrochim Acta 137:221Google Scholar
  12. 12.
    Lopez-Molinero A, Echegoyen Y, Sipiera D, Castillo JR (2005) Antimony(V) volatilization with bromide and determination by inductively coupled plasma atomic emission spectrometry. Talanta 66:863CrossRefGoogle Scholar
  13. 13.
    Yu C, Cai Q, Guo Z-X, Yang Z, Beng Khoo S (2002) Antimony speciation by inductively coupled plasma mass spectrometry using solid phase extraction cartridges. Analyst 127:1380CrossRefGoogle Scholar
  14. 14.
    Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. TrAc Trends Anal Chem 21:53CrossRefGoogle Scholar
  15. 15.
    Fan Z, Zhou W (2006) Dithizone-chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples. Spectrochim Acta Part B 61:870CrossRefGoogle Scholar
  16. 16.
    Xia L, Hu B, Jiang Z, Wu Y, Liang Y (2004) Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of Trace Be, Co, Pd, and Cd in biological samples. Anal Chem 76:2910CrossRefGoogle Scholar
  17. 17.
    Li L, Hu B, Xia L, Jiang Z (2006) Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta 70:468CrossRefGoogle Scholar
  18. 18.
    Xia L, Hu B, Jiang Z, Wu Y, Li L, Chen R (2005) 8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks. J Anal At Spectrom 20:441CrossRefGoogle Scholar
  19. 19.
    Chamsaz M, Arbab-Zavar MH, Nazari S (2003) Determination of arsenic by electrothermal atomic absorption spectrometry using headspace liquid phase microextraction after in situ hydride generation. J Anal At Spectrom 18:1279CrossRefGoogle Scholar
  20. 20.
    Fragueiro S, Lavilla I, Bendicho C (2004) Headspace sequestration of arsine onto a Pd(II)-containing aqueous drop as a preconcentration method for electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 59:851CrossRefGoogle Scholar
  21. 21.
    Fragueiro S, Lavilla I, Bendicho C (2006) Hydride generation-headspace single drop microextraction-electrothermal atomic absorption spectrometry method for determination of selenium in waters after photoassisted prereduction. Talanta 68:1096CrossRefGoogle Scholar
  22. 22.
    Figueroa R, García M, Lavilla I, Bendicho C (2005) Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction. Spectrochim Acta Part B 60:1556CrossRefGoogle Scholar
  23. 23.
    Fan Z (2007) Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry. Anal Chim Acta 585:300CrossRefGoogle Scholar
  24. 24.
    Liu JF, Chi YG, Jiang GB (2005) Screening the extractability of some typical environmental pollutants by ionic liquids in liquid-phase microextraction. J Sep Sci 28:87CrossRefGoogle Scholar
  25. 25.
    Shioji H, Tsunoi S, Harino H, Tanaka M (2004) Liquid-phase microextraction of tributyltin and triphenyltin coupled with gas chromatography-tandem mass spectrometry Comparison between 4-fluorophenyl and ethyl derivatizations. J Chromatogr A 1048:81Google Scholar
  26. 26.
    Gil S, Fragueiro S, Lavilla I, Bendicho C (2005) Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation. Spectrochim Acta Part B 60:145CrossRefGoogle Scholar
  27. 27.
    Colombini V, Bancon-Montigny C, Yang L, Maxwell P, Sturgeon RE, Mester Z (2004) Headspace single-drop microextration for the detection of organotin compounds. Talanta 63:555CrossRefGoogle Scholar
  28. 28.
    Box GEP, Hunter JS, Hunter WG (1989) Estadística para investigadores, 1st edn. Reverté, BarcelonaGoogle Scholar
  29. 29.
    Kirkbright GF, Taddia M (1978) Application of masking agents in minimizing interferences from some metal ions in the determination of arsenic by atomic absorption spectrometry with the hydride generation technique. Anal Chim Acta 100:145CrossRefGoogle Scholar
  30. 30.
    Welz B, Melcher M (1984) Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry: part 2. Influence of the valency state of arsenic on the degree of signal depression caused by copper, iron and nickel. Analyst 109:573CrossRefGoogle Scholar
  31. 31.
    Psillakis E, Kalogerakis N (2001) Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. J Chromatogr A 907:211CrossRefGoogle Scholar
  32. 32.
    Ding W-W, Sturgeon RE (1996) Interference of copper and nickel on electrochemical hydride generation. J Anal At Spectrom 11:421CrossRefGoogle Scholar
  33. 33.
    Deng T-L, Chen Y-W, Belzile N (2001) Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Anal Chim Acta 432:293CrossRefGoogle Scholar
  34. 34.
    Yan XP, Van Mol W, Adams F (1996) Determination of (ultra)trace amounts of antimony(III) in water by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry. Analyst 121:1061CrossRefGoogle Scholar
  35. 35.
    Matusiewicz H, Kopras M (2003) Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace. J Anal At Spectrom 18:1415CrossRefGoogle Scholar
  36. 36.
    Mester Z, Sturgeon RE, Lam JW (2000) Sampling and determination of metal hydrides by solid phase microextraction thermal desorption inductively coupled plasma mass spectrometry. J Anal At Spectrom 15:1461CrossRefGoogle Scholar
  37. 37.
    Amin MN, Kaneco S, Nomura K, Suzuki T, Ohta K (2003) Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Microchim Acta 141:87CrossRefGoogle Scholar
  38. 38.
    Sánchez Rojas F, Bosch Ojeda C, Cano Pavón JM (2007) An ion-exchange method for speciation of antimony by flow injection electrothermal atomic absorption spectrometry. Talanta 71:918CrossRefGoogle Scholar
  39. 39.
    Matusiewicz H, Krawczyk M (2008) Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis. J Anal At Spectrom 23:43CrossRefGoogle Scholar
  40. 40.
    Garbós S, Rzepecka M, Bulska E, Hulanicki A (1999) Microcolumn sorption of antimony (III) chelate for antimony speciation studies. Spectrochim Acta Part B 54:873CrossRefGoogle Scholar
  41. 41.
    Niedzielski P, Siepak M (2003) Determination of Sb(III) and Sb(V) in water samples by hydride generation atomic absorption spectrometry with in-situ trapping in a graphite tube. Anal Lett 36:971CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Francisco Pena-Pereira
    • 1
  • Isela Lavilla
    • 1
  • Carlos Bendicho
    • 1
  1. 1.Departamento de Química Analítica y Alimentaria, Area de Química Analítica, Facultad de QuímicaUniversidade de VigoVigoSpain

Personalised recommendations