Advertisement

Microchimica Acta

, Volume 163, Issue 3–4, pp 195–202 | Cite as

Receptors for organochlorine pesticides based on calixarenes

  • Gianfranco Bocchinfuso
  • Claudia Mazzuca
  • Claudio Saracini
  • Mariano Venanzi
  • Laura Micheli
  • Giuseppe Palleschi
  • Antonio Palleschi
Original Paper

Abstract

The water soluble 4-sulfocalix[n]arenes (with n = 4,6,8) have been investigated as potential synthetic receptors for cyclodiene organochlorine pesticides. Steady state fluorescence experiments in ethanol solution have shown that only the cavitands with n equal to 6 and 8 form complexes, of comparable stability, with heptachlor. Electrochemical data, obtained in water solution, confirmed the ability of 4-sulfocalix[6]arene to bind the heptachlor, unlike the smaller calixarene. Moreover, a significant increase in the stability constant is observed in water solutions. This stability is caused by the sterical hindrance of pesticides with respect to the cavity dimension of the calixarene. This results in a selective interaction of this molecule with other organochlorine pesticides. Binding experiments, carried out with endosulfan have shown that, despite of chemical similarity, 4-sulfocalix[6]arene and 4-sulfocalix[8]arene behave in a very different way: the former is unable to bind this pesticide, while the latter shows a binding constant of 4.7 × 105 with endosulfan. To investigate the molecular features of the interactions, molecular dynamic simulations of 4-sulfocalix[6]arene in presence of heptachlor in water solution have been performed. These simulations show that different configurations of heptachlor inside the calixarene cavity are equally populated and easily interconverting, suggesting that a non specific hydrophobic interaction plays a key role in the complex stability. These studies have permitted to individuate versatile synthetic receptors for organochlorine pesticides.

Keywords

Chemoreceptor Organochlorine pesticide Sulfocalixarene Molecular dynamics simulation 

Notes

Acknowledgments

This work was funded by EU FP VI (Grant No. IP FOOD-CT-2004–06988 (BIOCOP)).

References

  1. 1.
    Manclús JJ, Abad A, Lebedev MY, Mojarrad F, Micková B, Mercader JV, Primo J, Mira MA, Montoya A (2004) Development of a monoclonal immunoassay selective for chlorinated cyclodiene insecticides. J Agric Food Chem 52:2776CrossRefGoogle Scholar
  2. 2.
    Suwalsky M, Benites M, Villena F, Aguilar F, Sotomayor CP (1997) The organochlorine pesticide heptachlor disrupts the structure of model and cell membranes. Biochem Biophys Acta 1326:115CrossRefGoogle Scholar
  3. 3.
    Mukherjee I, Gopal M (1996) Chromatographic techniques in the analysis of organochlorine pesticide residues. J Chromatogr 754:33CrossRefGoogle Scholar
  4. 4.
    FDA (U S Food and Drug Administration) (1994) Pesticide analytical manual vol. I, 3rd edn. U S Food and Drug Administration, Washington DC, USA, pp 302–1Google Scholar
  5. 5.
    Brummel KE, Wright J, Eldefrawi ME (1997) Fiber optic biosensor for cyclodiene insecticides. J Agric Food Chem 45:3292CrossRefGoogle Scholar
  6. 6.
    Bell TW, Hext NM (2004) Supramolecular optical chemosensors for organic analytes. Chem Soc Rev 33:589Google Scholar
  7. 7.
    Gutsche CD (1983) Calixarenes. Acc Chem Res 16:161CrossRefGoogle Scholar
  8. 8.
    Katsu T, Ido K (2002) Ethylammonium-selective membrane electrode using p-tert-butylcalix[6]arene derivatives. Anal Sci 18:473CrossRefGoogle Scholar
  9. 9.
    Nam KC, Ko SW, Kang SO, Lee SH, Kim DS (2001) Synthesis and ion binding properties of cesium selective quadruply bridged calix[6]arenes. J Inclus Phenom 40:285CrossRefGoogle Scholar
  10. 10.
    Bohmer V (1995) Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed Engl 34:713CrossRefGoogle Scholar
  11. 11.
    Kunsagi-Mate S, Nagy G, Kollar L (2001) Host-guest interaction of calixarene molecules with neutral benzotrifluorides. Comparison of luminescence spectral data with results of model calculations relating to complex formation. Anal Chim Acta 428(2):301CrossRefGoogle Scholar
  12. 12.
    Pailleret A, Herzog G, Arrigan DWM (2003) Electrochemical activity of phenolic calixarenes. Electrochem Commun 5(1):68CrossRefGoogle Scholar
  13. 13.
    Kook S (2002) Energy transfer between calixarene and naphthalene. Bull Korean Chem Soc 23:1111Google Scholar
  14. 14.
    Kunsagi-Maté S, Bitter I, Grun A, Nagy G, Kollàr L (2002) Anisotropy decay study on the host-guest interaction of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluomethyl)benzene. J Biochem Biophys Methods 53:101CrossRefGoogle Scholar
  15. 15.
    Komura T, Yamaguchi T, Kura K, Tanabe J (2002) Voltammetric and impedance study of the binding of ferrocene derivatives to a sulfonated calix[6]arene host in aqueous solutions. J Electroanal Chem 523:126CrossRefGoogle Scholar
  16. 16.
    Mccartney CM, Richardson T, Greenwood MB, Cowlam N, Davis F, Stirling CJM (1997) The effect of pendant chain structure on the pyroelectric behavior of calix(8)arene Langmuir-Blodgett films. Supramol Science 4:385CrossRefGoogle Scholar
  17. 17.
    Arena G, Contino A, Longo E, Sgarlata C, Spoto G, Zito V (2004) Self-assembling, patterning and SPR imaging of a 1,3 alternate bis(dipyridyl)calix[4]arene derivative-Cu2+ complex immobilized on to Au(111) surfaces. Chem Comm 16:1812CrossRefGoogle Scholar
  18. 18.
    Lutze O, Meruva RK, Frielich A, Ramamurthy N, Brown RB, Hower R, Meyerhoff ME (1999) Stabilized potentiometric solid-state polyion sensors using silver–calixarene complexes as additives within ion-exchanger-based polymeric films. Fresenius’ J Anal Chem 364:41CrossRefGoogle Scholar
  19. 19.
    Castro R, Godínez LA, Criss CM, Bott SG, Kaifer AE (1997) Solid-state and solution complexation of cobalt(III) sepulchrate by a water-soluble calix[6]arene host. Chem Commun 10:935CrossRefGoogle Scholar
  20. 20.
    Casnati A, Sciotto D, Arena G (2001) Calixarenes 2001. Kluwer Academic Publishers, Dordrecht, Neth, p 440Google Scholar
  21. 21.
    Yang W, de Villiers MM (2004) The solubilization of the poorly soluble drug nifedipine by water soluble 4-sulphonic calix 4-sulphonic calix[4]arenes. Eur J Pharma Biopharma 58:629CrossRefGoogle Scholar
  22. 22.
    Ludwing R (2005) Calixarenes for biochemical recognition and separation. Microchim Acta 152:1CrossRefGoogle Scholar
  23. 23.
    Fulton DA, Stoddart JF (2001) Neoglycoconjugates based on cyclodextrins and calixarenes. Bioconjugate Chem 12:655CrossRefGoogle Scholar
  24. 24.
    Alvarez J, Wang Y, Ong W, Kaifer AE (2003) Temperature, solvent, proton transfer and complexation effects on the conformational flexibility of the anionic host calix[6]arenesulfonate. J Supramol Chem 1:269, Volume Date 2001CrossRefGoogle Scholar
  25. 25.
    Alvarez J, Gomez-Kaifer M (1998) Importance of intramolecular hydrogen bonding for preorganization and binding of molecular guests by water-soluble calix[6]arene hosts. Chem Comm (Cambridge) 14:1455CrossRefGoogle Scholar
  26. 26.
    Shinkai S, Mori S, Koreishi H, Tsubaki T, Manabe O (1986) Hexasulfonated calix[6larene derivatives: a new class of catalysts, surfactants, and host molecules. J Am Chem Soc 108:2409CrossRefGoogle Scholar
  27. 27.
    Atwood JL, Clark DL, Jumeja RK, Orr GW, Robinson KD, Vincent RL (1992) Double partial cone conformation for Na2{calyx[6]arene sulfonate}∙20.5H2O and its parent acid. J Am Chem Soc 114:7558CrossRefGoogle Scholar
  28. 28.
    Ghoufi A, Morel JP, Morel-Desroiser N, Malfreyt P (2005) MD simulations of the binding of alchols and diols by calixarene in water: connection between microscopic and macroscopic properties. J Phys Chem B 109:23579CrossRefGoogle Scholar
  29. 29.
    Ghoufi A, Pison L, Morel J P Morel-Desroiser N, Bonal C, Malfreyt P (2007) Computational and experimental investigation of supramolecular assemblies of p-sulfonatocalix[4]arene organized by weak forces. J Phys Chem B 111:11478CrossRefGoogle Scholar
  30. 30.
    Ghoufi A, Bonal C, Morel JP, Morel-Desroiser N, Malfreyt P (2004) Structure and energetics of complexes of the p-sulfonatocalix[4]arene with ammonium, alkylammonium, and tetraalkylammonium cations in water using molecular dynamics simulations. J Phys Chem B 108:5095CrossRefGoogle Scholar
  31. 31.
    Del Carlo M, Lionti I, Taccini M, Cagnini A, Mascini M (1997) Disposable screen-printed electrodes for the immunochemical detection of polychlorinated biphenyls. Anal Chim Acta 342:189CrossRefGoogle Scholar
  32. 32.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18:165CrossRefGoogle Scholar
  33. 33.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389CrossRefGoogle Scholar
  34. 34.
    Diao G, Liu Y (2005) The electrochemical behavior of p-sulfonated sodium salt of calix[6]arene. Electroananalysis 17:1279CrossRefGoogle Scholar
  35. 35.
    Connors KA (1987) Binding constants: the measurements of complex stability. Wiley, New York, p 21Google Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria, GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople, JA (2004) Gaussian 03, revision C 02, Gaussian, Inc, Wallingford CTGoogle Scholar
  37. 37.
    Lindhal E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306Google Scholar
  38. 38.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225CrossRefGoogle Scholar
  39. 39.
    Berendsen HJC, Postma JM, van Gunsteren WF, Hermans J (1981) Intermolecular forces. Reidel, Dordrecht, p 331Google Scholar
  40. 40.
    Palleschi A, Bocchinfuso G, Coviello T, Alhaique F (2005) Molecular dynamics investigations for the polysaccharide scleroglucan: first study on the triple helix structure. Carbohydr Res 340:2154CrossRefGoogle Scholar
  41. 41.
    Bocchinfuso G, Stella L, Martinelli S, Flex E, Carta C, Pantaleoni F, Pispisa B, Venanzi M, Tartaglia M, Palleschi A (2007) Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Proteins: Structure, Function, and Bioinformatics 66:963CrossRefGoogle Scholar
  42. 42.
    Iki N, Miyano S (2001) Can thiacalixarene surpass calixarene? J Incl Phenom Macr Chem 41:99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gianfranco Bocchinfuso
    • 1
  • Claudia Mazzuca
    • 1
  • Claudio Saracini
    • 1
  • Mariano Venanzi
    • 1
  • Laura Micheli
    • 1
  • Giuseppe Palleschi
    • 1
  • Antonio Palleschi
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “ Tor Vergata”RomaItaly

Personalised recommendations