Microchimica Acta

, Volume 163, Issue 3–4, pp 149–155 | Cite as

E-DNA sensors for convenient, label-free electrochemical detection of hybridization

  • Francesco Ricci
  • Kevin W. Plaxco


We review the development of reagentless, electrochemical sensors for the sequence-specific detection of nucleic acids that are based on the target-induced folding or unfolding of electrode-bound oligonucleotides. These devices, which are sometimes termed E-DNA sensors, are comprised of an oligonucleotide probe modified on one terminus with a redox reporter and attached to an electrode at the other. Hybridization of this probe DNA to a target oligonucleotide influences the rate at which the redox reporter collides with the electrode, leading to a detectable change in redox current. Because all sensing elements of this method are strongly linked to the interrogating electrode, E-DNA sensors are label-free, operationally convenient and readily reusable. As E-DNA signaling is predicated on a binding-specific change in the dynamics of the probe DNA (rather than simply monitoring the adsorption of a target to the sensor surface) and because electroactive contaminants (interferents) are relatively rare, this class of sensors is notably resistant to false positives arising from the non-specific adsorption of interferents, and performs well even when challenged directly with blood serum, soil and other complex sample matrices. We review the history of and recent advances in this promising DNA and RNA detection approach.


DNA Sensors Electrochemical Label-free 


  1. 1.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536CrossRefGoogle Scholar
  2. 2.
    Gaylord BS, Heeger AJ, Bazan GC (2002) DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA 99:10954CrossRefGoogle Scholar
  3. 3.
    Peterson AW, Wolf LK, Georgiadis RM (2002) Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc 124:14601CrossRefGoogle Scholar
  4. 4.
    Ahn S, Walt DR (2005) Detection of Salmonella spp. using microsphere-based, fiber-optic DNA array. Anal Chem 77 (15):5041CrossRefGoogle Scholar
  5. 5.
    Kelley SO, Barton JK, Jackson NM, Hill MG (1997) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Bioconj Chem 8:31CrossRefGoogle Scholar
  6. 6.
    Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol 19:833CrossRefGoogle Scholar
  7. 7.
    Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77(21):6976CrossRefGoogle Scholar
  8. 8.
    Patolsky F, Lichtenstein A, Willner I (2001) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. J Am Chem Soc 123:5194CrossRefGoogle Scholar
  9. 9.
    Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503CrossRefGoogle Scholar
  10. 10.
    Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Mutation detection by electrocatalysis at DNA-modified electrode. Nat Biotechnol 18:1096CrossRefGoogle Scholar
  11. 11.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192CrossRefGoogle Scholar
  12. 12.
    Thorp HH (1998) Cutting out the middleman: DNA biosensors based on electrochemical oxidation. Trends Biotech 16:117CrossRefGoogle Scholar
  13. 13.
    Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913CrossRefGoogle Scholar
  14. 14.
    Gore MR, Szalai VA, Ropp PA, Yang IV, Silverman JS, Thorp HH (2003) Detection of attomole quantities of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation. Anal Chem 75:6586CrossRefGoogle Scholar
  15. 15.
    Floch LF, Ho HA, Harding-Lepage P, Bedard M, Neagu-Plesu R, Leclerc M (2005) Ferrocene-functionalized cationic polythiophene for the label-free electrochemical detection of DNA. Adv Mater 17:1251CrossRefGoogle Scholar
  16. 16.
    Gibbs JM, Park SJ, Anderson DR, Watson KJ, Mirkin CA, Nguyen ST (2005) Polymer-DNA hybrids as electrochemical probes for the detection of DNA. J Am Chem Soc 127:1170CrossRefGoogle Scholar
  17. 17.
    Kim E, Kim K, Yang H, Kim YT, Kwak J (2003) Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer. Anal Chem 75:5665CrossRefGoogle Scholar
  18. 18.
    Kerman K, Matsubara Y, Morita Y, Takamura Y, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Sci Technol Adv Mater 5:351CrossRefGoogle Scholar
  19. 19.
    Wang J, Polsky R, Merkoci A, Turner KL 2003 ‘Electroactive beads’ for ultrasensitive DNA detection Langmuir 19:989CrossRefGoogle Scholar
  20. 20.
    Hwang S, Kim E, Kwak J (2005) Electrochemical detection of DNA hybridization using biometallization. Anal Chem 77: 579CrossRefGoogle Scholar
  21. 21.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134CrossRefGoogle Scholar
  22. 22.
    Mao T, Luo C, Ouyang Q (2003) Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res 31:108CrossRefGoogle Scholar
  23. 23.
    Immoos CE, Lee SJ, Grinstaff MW (2004) Conformationally gated electrochemical gene detection. Chembiochem 5:1100CrossRefGoogle Scholar
  24. 24.
    Du H, Disney MD, Miller BL, Krauss TD (2003) Hybridization-based unquenching of DNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors. J Am Chem Soc 125:4012CrossRefGoogle Scholar
  25. 25.
    Du H, Strohsahl CM,Camera J, Miller BL, Krauss TD (2005) Sensitivity and specificity of metal surface immobilized molecular beacon biosensors. J Am Chem Soc 127:7932CrossRefGoogle Scholar
  26. 26.
    Wang H, Li J, Liu H, Liu Q, Mei Q, Wang Y, Zhu J, He N, Lu Z (2002) Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Res 30:e61CrossRefGoogle Scholar
  27. 27.
    Ramachandran A, Flinchbauch J, Ayoubi P, Olah GA, Malayer JR (2004) Target discrimination by surface-immobilized molecular beacons designed to detect Francisella tularensis. Biosens Bioelectron 19:727CrossRefGoogle Scholar
  28. 28.
    Palecek E (2004) Surface-attached molecular beacons light the way for nucleotide sequencing. Trends Biotechnol 22:55CrossRefGoogle Scholar
  29. 29.
    Thorp HH (2003) Reagentless detection of DNA sequences on chemically modified electrodes. Trends Biotechnol 21:522CrossRefGoogle Scholar
  30. 30.
    Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW (2006) Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem 78(16):5671CrossRefGoogle Scholar
  31. 31.
    Lubin AA, Fan C, Schafer M, Clelland CT, Bancroft C, Heeger AJ, Plaxco KW (2008) Rapid, electronic detection of DNA and non-natural DNA analogs for molecular marking applications. For Sci Comm 10(1):1Google Scholar
  32. 32.
    Lai RY, Seferos DS, Heeger AJ, Bazan GC, Plaxco KW (2006) Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir 22:10796CrossRefGoogle Scholar
  33. 33.
    Lai RY, Lagally ET, Lee S-H, Soh HT, Plaxco KW, Heeger AJ (2006) Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proc Natl Acad Sci USA 103:4017CrossRefGoogle Scholar
  34. 34.
    Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23:6827CrossRefGoogle Scholar
  35. 35.
    Xiao Y, Lai R, Plaxco KW (2007) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nature Protocols 2:2875CrossRefGoogle Scholar
  36. 36.
    Lai RY, Lee S-H, Soh HT, Plaxco KW, Heeger AJ (2006) Differential Labeling of Closely-spaced Biosensor Electrodes via Oxidative Desorption. Langmuir 22:1932CrossRefGoogle Scholar
  37. 37.
    Pavlovic E, Lai RY, Wu TT, Ferguson BS, Sun R, Plaxco KW, Soh HT (2008) Specific, electromechanical detection of multiple DNA sequences in an integrated microfluidic system. Langmuir 24(3):1102CrossRefGoogle Scholar
  38. 38.
    Annse A, Demaille C (2006) Dynamics of electron transport by elastic bending of short DNA duplexes.Experimental study and quantitative modeling of the cyclic voltammetric behavior of 30-ferrocenyl DNA endgrafted on gold. J Am Chem Soc 128:542CrossRefGoogle Scholar
  39. 39.
    Ricci F, Lai RY, Plaxco KW (2007) Linear, redox modified DNA probes as electrochemical DNA sensors. Chem Comm 2007:3768CrossRefGoogle Scholar
  40. 40.
    Immoos CE, Lee SJ, Grinstaff MW (2004) DNA–PEG–DNA triblock macromolecules for reagentless DNA detection. J Am Chem Soc 126:10814CrossRefGoogle Scholar
  41. 41.
    Xiao Y, Lubin AA, Baker BR, Plaxco KW, Heeger AJ (2006) Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci USA 103:16677CrossRefGoogle Scholar
  42. 42.
    Xiao Y, Qu X, Plaxco KW, Heeger AJ (2007) Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J Am Chem Soc 129(39):11896CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of Chemistry and Biochemistry and Biomolecular Science and Engineering ProgramUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations