Advertisement

Microchimica Acta

, Volume 160, Issue 1–2, pp 275–281 | Cite as

Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry

  • Gongjun YangEmail author
  • Xilong Qu
  • Ming ShenEmail author
  • Chengyin Wang
  • Qishu Qu
  • Xiaoya Hu
Original Paper

Abstract.

Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples.

Keywords: Lead ion; poly(phenol red); electrochemical behavior; differential pulse voltammetry; trace determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, J, Tian, B, Wang, J, Lu, J, Olsen, C, Yarnitzky, C, Olsen, K, Hammerstrom, D, Bennett, W 1999Stripping analysis into the 21st century: faster, smaller, cheaper, simpler and betterAnal Chim Acta385429CrossRefGoogle Scholar
  2. Achterberg, E P, Braungardt, C 1999Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine watersAnal Chim Acta400381CrossRefGoogle Scholar
  3. Yantasee, W, Lin, Y H, Fryxell, G E, Busche, B J 2004Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS)Anal Chim Acta502207CrossRefGoogle Scholar
  4. Shiu, K K, Chan, O Y, Pang, S K 1995Factors affecting the electroanalytical behavior of polypyrrole-modified electrodes bearing complexing ligandsAnal Chem672828CrossRefGoogle Scholar
  5. Shiu, K K, Zhang, Y Z 1997Electrochemical impedance study of polypyrrole modified electrodes bearing bathophenanthroline disulfonate in copper analysisElectrochim Acta42461CrossRefGoogle Scholar
  6. Zejli, H, Sharrock, P, Hidalgo-Hidalgo de Cisneros, J L, Naranjo-Rodriguez, I, Temsamani, K R 2005Voltammetric determination of trace mercury at a sonogel–carbon electrode modified with poly-3-methylthiopheneTalanta6879CrossRefGoogle Scholar
  7. Monterroso, S C C, Carapuca, H M, Duarte, A C 2006Mixed polyelectrolyte coatings on glassy carbon electrodes: ion-exchange, permselectivity properties and analytical application of poly-l-lysine-poly(sodium 4-styrenesulfonate)-coated mercury film electrodes for the detection of trace metalsTalanta681655CrossRefGoogle Scholar
  8. Silva, C P, Carapuca, H M 2006Glassy carbon electrodes coated with poly(allylamine hydrochloride), PAH: characterization studies and application to ion-exchange voltammetry of trace lead(II) at combined PAH/mercury film electrodesElectrochim Acta521182CrossRefGoogle Scholar
  9. Zhang, L, Li, W, Shi, M H, Kong, J L 2006Probing trace Pb2+ using electrodeposited N,N′-(o-phenylene)-bis-benzenesulfonamide polymer as a novel selective ion capturing filmTalanta70432CrossRefGoogle Scholar
  10. Chow, E, Hibbert, D B, Gooding, J J 2005Electrochemical detection of lead ions via the covalent attachment of human angiotensin I to mercaptopropionic acid and thioctic acid self-assembled monolayersAnal Chim Acta543167CrossRefGoogle Scholar
  11. Surme, Y, Narin, I, Soylak, M, Yuruk, H, Dogan, M 2007Cloud point extraction procedure for flame atomic absorption spectrometric determination of lead(II) in sediment and water samplesMicrochim Acta157193CrossRefGoogle Scholar
  12. Horvotha, Z S, Lostutya, A, Meszorosb, E, Molnor, A 1994Determination of trace metals and speciation of chromium ions in atmospheric precipitation by ICP-AES and GFAASTalanta411165CrossRefGoogle Scholar
  13. Borges, D, Welz, B, Curtius, A J 2007Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standardsMicrochim Acta15919CrossRefGoogle Scholar
  14. Shaw, M J, Haddad, P R 2004The determination of trace metal pollutants in environmental matrices using ion chromatographyEnviron Int30403CrossRefGoogle Scholar
  15. Tan, K J, Huang, C Z, Huang, Y M 2006Determination of lead in environmental water by a backward light scattering techniqueTalanta70116CrossRefGoogle Scholar
  16. Sun, D, Wan, C, Li, G, Wu, K 2007Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrodeMicrochim Acta158255CrossRefGoogle Scholar
  17. Majid, S, Rhazi, M E, Amine, A, Curulli, A, Palleschi, G 2003Carbon paste electrode bulk-modified with the conducting polymer poly(1,8-diaminonaphthalene): application to lead determinationMicrochim Acta143195CrossRefGoogle Scholar
  18. Warriner, K, Higson, S, Christie, I, Ashworth, D, Vadgama, P 1996Electrochemical characteristics of two model electropolymerised films for enzyme electrodesBiosens Bioelectron11615CrossRefGoogle Scholar
  19. Lucca, A R, Santos, A S, Pereira, A C, Kubota, L T 2002Electrochemical behavior and electrocatalytic study of the methylene green coated on modified silica gelJ Colloid Interf Sci254113CrossRefGoogle Scholar
  20. Bretta, C M A, Inzeltb, G, Kertesz, V 1999Poly(methylene blue) modified electrode sensor for haemoglobinAnal Chim Acta385119CrossRefGoogle Scholar
  21. Warriner, K, Higson, S, Vadgama, P 1997A lactate dehydrogenase amperometric pyruvate electrode exploiting direct detection of NAD+ at a poly(3-methylthiophene)/poly(phenol red)-modified platinum surfaceMat Sci Eng C-Bio SC591CrossRefGoogle Scholar
  22. Long, D D, Marx, K A, Zhou, T 2001Amperometric hydrogen peroxide sensor electrodes coated with electropolymerized tyrosine derivative and phenolic filmsJ Electroanal Chem501107CrossRefGoogle Scholar
  23. Stern, E, Jay, S, Bertram, J, Boese, B, Kretzschmar, I 2006Electropolymerization on microelectrodes: functionalization technique for selective protein and DNA conjugationAnal Chem786340CrossRefGoogle Scholar
  24. Kobayashi, S, Higashimura, H 2003Oxidative polymerization of phenols revisitedProg Polym Sci281015CrossRefGoogle Scholar
  25. Honeychurch, K C, Hart, J P, Cowell, D C, Arrigan, D W M 2001Voltammetric studies of lead at calixarene modified screen-printed carbon electrodes and its trace determination in water by stripping voltammetrySensor Actuat B77642CrossRefGoogle Scholar
  26. Bard, A J, Faulkner, L R 1980Electrochemical methodsWileyNew YorkGoogle Scholar
  27. Monterroso, S C C, Carapuca, H M, Duarte, A C 2005Ion-exchange and permselectivity properties of poly(sodium 4-styrenesulfonate) coatings on glassy carbon: application in the modification of mercury film electrodes for the direct voltammetric analysis of trace metals in estuarine watersTalanta65644CrossRefGoogle Scholar
  28. Tercier, M L, Parthasarathy, N, Bufle, J 1995Reproducible, reliable and rugged Hg-plated Ir-based microelectrode for in situ measurements in natural watersElectroanalysis755CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouP.R. China

Personalised recommendations