Microchimica Acta

, Volume 162, Issue 1–2, pp 261–268 | Cite as

Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol

  • Shasheng Huang
  • Yongxia Qu
  • Ruina Li
  • Jian Shen
  • Liwei Zhu
Original Paper


A novel and convenient strategy is presented for determination of 2,4-dichlorophenol (2,4-DCP). Horseradish peroxidase (HRP) was self-assembled on a multiwalled carbon nanotubues (MWNTs) modified glassy carbon (GC) electrode. In the presence of hydrogen peroxide (H2O2), 2,4-DCP can be oxidized at this enzyme electrode and the reduction current is proportional to the concentration of the 2,4-DCP. The method showed good linearly for 1.0 × 10−6–1.0 × 10−4 M 2,4-DCP with a detection limit of 3.8 × 10−7 M under the optimal conditions. The peak current of the HRP-MWNTs-GC electrode decreased by about 15% over two weeks. The mechanism of the enzyme biosensor was also studied, and a kinetic equation was derived. The performance of the electrode was verified by determination of 2,4-DCP in environmental water.

Keywords: 2,4-Dichlorophenol; carbon nanotubules; horseradish peroxidase; detection; kinetic equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ureta-Zañartu, M S, Bustos, P, Berríos, C, Diez, M C, Mora, M L, Gutiérrez, C 2002Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrodeElectrochimica Acta472399CrossRefGoogle Scholar
  2. Laurenti, E, Ghibaudi, E, Ardissone, S, Ferrari, R P 2003Oxidation of 2,4-di chloro-phenol catalyzed by horseradish peroxidase: characterization of the reaction mechanism by UV-visible spectroscopy and mass spectrometryInorg Biochem95171CrossRefGoogle Scholar
  3. Kintz, P, Tracqui, A, Mangin, P 1992Accidental death caused by the absorption of 2,4-dichlorophenol through the skinArch Toxicol66298CrossRefGoogle Scholar
  4. Liu, B, Wang, J P, Liu, M L, Zhu, H M 2004Determination of 2,4-dichlorophenol with internal standard method by gas chromatographySpectroscopy Laboratory21576Google Scholar
  5. Wagner, M, Nicell, J A 2002Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxideWat Res364041CrossRefGoogle Scholar
  6. Roper, J C, Sarkar, J M, Dec, J, Bollag, J M 1995Enhanced enzymatic removal of chlorophenols in the presence of co-substratesWat Res War292720CrossRefGoogle Scholar
  7. Dec, J, Bollag, J M 1990Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactionsArch Environ Contam Toxicol19543CrossRefGoogle Scholar
  8. Xu, F, Bhandari, A 2003Retention and extractability of phenol, cresol and dichlorophenol exposed to two surface soils in the presence of horseradish peroxidase enzymeAgric Food Chem51183CrossRefGoogle Scholar
  9. Yang, S, Rudolf, S S W, Kong, R Y C 2002Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenolAquat Toxicol59191Google Scholar
  10. Akhtar S, Husain Q (2006) Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, article (in press)Google Scholar
  11. Wang, C C, Lee, C M, Kuan, C H 2000Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitusChemosphere41447CrossRefGoogle Scholar
  12. Ruedas Rama, M J, Ruiz Medina, A, Molina Di’az, A 2003A simple and straightforward procedure for monitoring phenol compounds in waters by using UV solid phase transduction integrated in a continuous flow systemMicrochim Acta141143CrossRefGoogle Scholar
  13. Marko-Varga, G, Emnéus, J, Gorton, L 1995Development of enzyme-based amperometric sensors for the determination of phenolic compoundsTrends Anal Chem14319Google Scholar
  14. Lindgren, A, Emnéus, J, Ruzgas, T, Gorton, L, Marko-Varga, G 1997Amperometric detection of phenols using peroxidase-modified graphite electrodesAnal Chim Act34751CrossRefGoogle Scholar
  15. Rosatto, S S, Kubota, L T, Neto, G O 1999Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica-titaniumAnal Chim Acta39065CrossRefGoogle Scholar
  16. Rosatto, S S, Sotomayor, P T, Kubota, L T, Gushikem, Y 2002SiO2/Nb2O5 sol–gel as a support for HRP immobilization inbiosensor preparation for phenol detectionElectrochimica Acta474451CrossRefGoogle Scholar
  17. Riu, J, Maroto, A, Rius, F X 2006Nanosensors in environmental analysisTalanta69288CrossRefGoogle Scholar
  18. Wang, J, Abdel-Nasser, K, Jan, M R 2004Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridizationBiosens Bioelectron20995CrossRefGoogle Scholar
  19. Joshi, P P, Merchant, S A, Wang, Y, Schmidtke, D W 2005Amperometric biosensors based on redox polymer-carbon nanotube-enzyme compositesAnal Chem773183CrossRefGoogle Scholar
  20. Davis, J J, Green, M L H, Hill, H A O, Leung, Y C, Sadler, P J, Sloan, J, Xaviers, A V, Tsang, S C 1998The immobilisation of proteins in carbon nanotubesInorganica Chimica Acta272261CrossRefGoogle Scholar
  21. Liu, G D, Lin, Y H 2006Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agentsAnal Chem78835CrossRefGoogle Scholar
  22. Liu, G D, Riechers, S L, Mellen, M C, Lin, Y H 2005Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrodeElectrochem Commun71163CrossRefGoogle Scholar
  23. Cai, C X, Chen, J 2004Direct electron transfer of redox proteins and enzymes promoted by carbon nanotubeElectrochemistry10159Google Scholar
  24. Yu, X, Chattopadhyay, D, Galeska, I, Papadimitrakopoulos, F, Rusling, J F 2003Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodesElectrochem Commun5408CrossRefGoogle Scholar
  25. Qian, L, Yang, X 2006Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor amperometric hydrogen peroxide biosensorTalanta68721CrossRefGoogle Scholar
  26. Yan, Y M, Zheng, W, Zhang, M, Wang, L, Su, L, Mao, L 2005Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic responseLangmuir216560CrossRefGoogle Scholar
  27. Zhao, G C, Zhang, L, Wei, X W, Yang, Z S 2003Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysisElectrochem Commun5825CrossRefGoogle Scholar
  28. Chattopadhyay, K, Mazumdar, S 2000Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactantsBioelectrochemistry5317CrossRefGoogle Scholar
  29. Ruzgas, T, Emnéus, J, Gorton, L, Marko-Varga, G 1995The development of a peroxidase biosensor for monitoring phenol and related aromatic compoundsAnalytica Chimca Acta311245CrossRefGoogle Scholar
  30. Ruzgas, T, Gorton, L, Emnéus, J, Marko-Varga, G 1995Kinetic models of horseradish peroxidase action on a graphite electrodeElectroanal Chem39141CrossRefGoogle Scholar
  31. Tang, L, Zeng, G M, Huang, G H, Shen, G L, Niu, C G 2004Kinetic study on the inhibition and catalysis of horseradish peroxidase biosensor chinaBiotechnol2470Google Scholar
  32. Chen, S G, Zhou, R Q 2001EnzymologyFudan University PressShangHai163Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shasheng Huang
    • 1
  • Yongxia Qu
    • 1
  • Ruina Li
    • 1
  • Jian Shen
    • 1
  • Liwei Zhu
    • 1
  1. 1.Life and Environmental Science CollegeShanghai Normal UniversityShanghaiP.R. China

Personalised recommendations