Microchimica Acta

, Volume 162, Issue 1–2, pp 57–64 | Cite as

Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application

Original Paper

Abstract.

A simple and controllable electrodeposition method is described to fabricate a homogeneous porous chitosan/single-walled carbon nanotubes (CHIT/SWNTs) nanocomposite film. The thickness of the nanocomposite film can be controlled through the change of concentration of SWNTs, SiO2 nanoparticles and chitosan solution, deposition time. Glucose oxidase (GOx) served as a model enzyme to demonstrate the potential application of the macroporous structured films in fabrication of amperometric glucose sensor with negligible mass transport limitation. The glucose biosensor was constructed by entrapping GOx molecules to the porous SWCNTs/CHIT nanocomposite film using glutaraldehyde as a cross-linker. The fabricated biosensor with three-dimension porous structures can provide a biocompatible microenvironment for maintaining the bioactivity of the immobilized enzyme, enhance mass transport of glucose substrate, and increase enzyme loading. Therefore, the biosensor exhibits a rapid response (<5 sec), a wide linear range (10 µM to 35 mM) and a low detection limit of 2.5 µM.

Keywords: Nanocomposite film; chitosan; porous structure; carbon nanotubes; SiO2 nanoparticles; biosensor; glucose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lvov, YMöhwald, H eds. 2000Protein architecture: interfacing molecular assemblies and immobilization biotechnologyMarcel DekkerNew YorkGoogle Scholar
  2. Onda, M, Ariga, K, Kunitake, T 1999Activity and stability of glucose oxidase in molecular films assembled alternately with polyionsJ Biosci Bioeng8769CrossRefGoogle Scholar
  3. Schüler, C, Caruso, F 2000Preparation of enzyme multilayers on colloids for biocatalysisMacromol Rapid Commun21750CrossRefGoogle Scholar
  4. Caruso, F, Schüler, C 2000Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activityLangmuir169595CrossRefGoogle Scholar
  5. Yu, A, Liang, Z, Caruso, F 2005Enzyme multilayer-modified porous membranes as biocatalystsChem Mater17171CrossRefGoogle Scholar
  6. Cassagneau, T, Caruso, F 2002Conjugated polymer inverse opals for potentiometric biosensingAdv Mater141837CrossRefGoogle Scholar
  7. Holland, B T, Abrams, L, Stein, A 1999Dual templating of macroporous silicates with zeolitic microporous frameworksJ Am Chem Soc1214308CrossRefGoogle Scholar
  8. Breck, D W 1974Zeolite molecular sievesJohn Wiley & SonsNew YorkGoogle Scholar
  9. Derouane, E G, Lenos, F, Naccache, C, Ribeiro, E R 1992Zeolite microporous solids: synthesis, structure and selectivityKluwer Academic PublishersDordrechtGoogle Scholar
  10. Zhao, X S, Lu, G Q, Millar, G J 1996Advances in mesoporous molecular sieve MCM-41Ind Eng Chem Res352075CrossRefGoogle Scholar
  11. Wang, Y, Caruso, F 2004Macroporous zeolitic membrane bioreactorsAdv Funct Mater141012CrossRefGoogle Scholar
  12. Valtchev, V 2002Silicalite-1 hollow spheres and bodies with a regular system of macrocavitiesChem Mater144371CrossRefGoogle Scholar
  13. Rhodes, K H, Davis, S A, Caruso, F, Zhang, B J, Mann, S 2000Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocksChem Mater122832CrossRefGoogle Scholar
  14. Cassagneau, T, Caruso, F 2002Semiconducting polymer inverse opals prepared by electropolymerizationAdv Mater1434CrossRefGoogle Scholar
  15. Song, Y Y, Zhang, D, Xia, X H 2005Nonenzymatic glucose detection using three-dimensional ordered macroporous platinum templateChem Eur J112177CrossRefGoogle Scholar
  16. Wang, C H, Yang, C, Song, Y Y, Gao, W, Xia, X H 2005Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold filmAdv Funct Mater151267CrossRefGoogle Scholar
  17. Deepa, P N, Kanungo, M, Claycomb, G, Sherwood, P M A, Collinson, M 2003Electrochemically deposited sol–gel-derived silicate films as a viable alternative in thin-film designAnal Chem755399CrossRefGoogle Scholar
  18. Bharathi, S, Joseph, J, Lev, O, Lev, Z 1999Electrodeposition of thin gold films from an aminosilicate stabilized gold solElectrochem Solid-State Lett2284CrossRefGoogle Scholar
  19. Bharathi, S, Nogami, M 2001A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzymeAnalyst1261919CrossRefGoogle Scholar
  20. Rinaudo, M, Pavlov, G, Desbrieres, J 1999Influence of acetic acid concentration on the solubilization of chitosanPolymer407029CrossRefGoogle Scholar
  21. Ligler, F S, Lingerfelt, B M, Price, R P, Schoen, P E 2001Development of uniform chitosan thin-film layers on silicon chipsLangmuir175082CrossRefGoogle Scholar
  22. Wu, L Q, Gadre, A P, Yi, H, Kastantin, M J, Rublov, G W, Bentley, W E, Payne, G F, Ghodssi, R 2002Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surfaceLangmuir188620CrossRefGoogle Scholar
  23. Fernandes, R, Wu, L Q, Chen, T, Yi, H, Rublov, G W, Ghodssi, R, Bentley, W E, Payne, G F 2003Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surfaceLangmuir194058CrossRefGoogle Scholar
  24. Luo, X L, Xu, J J, Wang, J L, Chen, H Y 2005Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor applicationChem Commun162169CrossRefGoogle Scholar
  25. Liu, Y, Wang, M, Zhao, F, Xu, Z, Dong, S 2005The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrixBiosens Bioelectron21984CrossRefGoogle Scholar
  26. Tkac, J, Whittaker, J W, Ruzgas, T 2007The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensorBiosens Bioelectron221820CrossRefGoogle Scholar
  27. Yang, Y, Wang, Z, Yang, M, Li, J, Zheng, F, Shen, G, Yu, R 2007Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodesAnalytica Chimica Acta584268CrossRefGoogle Scholar
  28. Spinks, G M, Shin, S R, Wallace, G G, Whitten, P G, Kim, S I, Kim, S J 2006Mechanical properties of chitosan/CNT microfibers obtained with improved dispersionSensor Actuat B-Chem115678CrossRefGoogle Scholar
  29. Qian, L, Yang, X 2006Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensorTalanta68721CrossRefGoogle Scholar
  30. Liu, Y, Qu, X, Guo, H, Chen, H, Liu, B, Dong, S 2006Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan compositeBiosens Bioelectron212195CrossRefGoogle Scholar
  31. Zhai, X, Wei, W, Zeng, J, Gong, S, Yin, J 2006Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADHMicrochim Acta154315CrossRefGoogle Scholar
  32. Qu, J, Shen, Y, Qu, X, Dong, S 2004Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reductionChem Commun134CrossRefGoogle Scholar
  33. Stöber, W, Fink, A, Bohn, E 1968Controlled growth of monodisperse silica spheres in the micron size rangeJ Colloid Interface Sci2662CrossRefGoogle Scholar
  34. Katz, E, Willner, I 2003Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensorsElectroanalysis15913CrossRefGoogle Scholar
  35. Dong, S, Luo, G, Feng, J, Li, Q W, Gao, H 2001Immunoassay of staphylococcal enterotoxin C1 by FTIR spectroscopy and electrochemical gold electrodeElectroanalysis1330CrossRefGoogle Scholar
  36. Bardea, A, Katz, E, Willner, I 2000Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble productElectroanalysis121097CrossRefGoogle Scholar
  37. Tripathi, V S, Kandimalla, V B, Ju, H 2006Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil compositeBiosens Bioelectron211529CrossRefGoogle Scholar
  38. Jiang, L, Lu, C, Jian, L, Peng, Z, Lu, G 2004A chitosan multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acidAnal Sci201055CrossRefGoogle Scholar
  39. Chen, X, Jia, J, Dong, S 2003Organically modified sol–gel/chitosan composite based glucose biosensorElectroanalysis15608CrossRefGoogle Scholar
  40. Yang, M, Yang, Y, Liu, B, Shen, G, Yu, R 2004Amperometric glucose biosensor based on chitosan with improved selectivity and stabilitySensor Actuat B-Chem101269CrossRefGoogle Scholar
  41. Kang, X H, Mai, Z B, Zou, X Y, Cai, P X, Mo, J Y 2007Electrochemical biosensor based on multi-walled carbon nanotubes and Au nanoparticles synthesized in chitosanJ Nanosci Nanotech71618CrossRefGoogle Scholar
  42. Luo, X, Killard, A J, Smyth, M R 2006Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodesElectroanalysis181131CrossRefGoogle Scholar
  43. Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensor Actuat B-Chem, doi: 10.1016/j.snb.2007.05.006Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryNanchang UniversityNanchangP.R. China

Personalised recommendations