Advertisement

Microchimica Acta

, Volume 162, Issue 3–4, pp 371–380 | Cite as

Towards the identification of characteristic minor components from textiles dyed with weld (Reseda luteola L.) and those dyed with Mexican cochineal (Dactylopius coccus Costa)

  • David A. PeggieEmail author
  • Alison N. Hulme
  • Hamish McNab
  • Anita Quye
Original Paper

Abstract.

The identity of a minor flavonoid component observed in extracts of textile samples dyed with weld (Reseda luteola L.) is confirmed as chrysoeriol (3′-O-methylluteolin) by HPLC-PDA analysis. HPLC-PDA, HPLC-MS and NMR techniques have been used to show that the unknown dcII component found in extracts of textiles dyed with Mexican cochineal (Dactylopius coccus Costa) is most probably the 7-C-glycoside of flavokermesic acid. In addition, the unknown dcIV and dcVII components have been shown to be isomeric with carminic acid, most probably differing only in the stereochemistry of the sugar moiety.

Keywords: Natural dyes; flavonoids; anthraquinones; historical textiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quye, A, Cheape, H, Burnett, J, Ferreira, E S B, Hulme, A N, McNab, H 2003An historical and analytical study of red, pink, green and yellow colours in quality 18th- and early 19th-century scottish tartansDyes Hist Archaeol191Google Scholar
  2. Hallet K, Howell D (2005) Size exclusion chromatography of silk – inferring the tensile strength and assessing the condition of historic tapestries. Preprints to the ICOM Committee for Conservation 14th Triennial meeting in The Hague, Vol. 2, p 911Google Scholar
  3. Petroviciu, I, Wouters, J 2002Analysis of natural dyes from Romanian 19th- and 20th-century ethnographical textiles by DAD-HPLCDyes Hist Archaeol1857Google Scholar
  4. Trojanowicz, M, Orska-Gawrys, J, Surowiec, I, Szostek, B, Urbaniak-Walczak, K, Kehl, J, Wrobel, M 2004Chromatographic investigation of dyes extracted from coptic textiles from the national museum in WarsawStud Conserv49115Google Scholar
  5. Ferreira, E S B, Quye, A, McNab, H, Hulme, A N 2002Photo-oxidation products of quercetin and morin as markers for the characterisation of natural flavonoid yellow dyes in ancient textilesDyes Hist Archaeol1863Google Scholar
  6. Ferreira E S B (2002) New approaches towards the identification of yellow dyes in ancient textiles. PhD Thesis, The University of EdinburghGoogle Scholar
  7. Peggie D A (2006) The development and application of analytical methods for the identification of dyes on historical textiles. PhD Thesis, The University of EdinburghGoogle Scholar
  8. Hacke A-M (2006) Investigation into the nature and ageing of tapestry materials. PhD Thesis, The University of ManchesterGoogle Scholar
  9. Wouters, J 1985High performance liquid chromatography of anthraquinones: analysis of plant and insect extracts and dyed textilesStud Conserv30119CrossRefGoogle Scholar
  10. Kaiser, R 1993Quantitative analyses of flavonoids in yellow dye plant species weld (Reseda luteola L.) and sawwort (Serratula tinctoria L.)Angew Bot67128Google Scholar
  11. Yuldashev, M P, Batirov, E Kh, Malikov, V M, Yulasheva, N P 1996Flavonoids of Psoralea drupaceae and Reseda luteola Chem Nat Compd32923CrossRefGoogle Scholar
  12. Cristea, D, Bareau, I, Vilarem, G 2003Identification and quantitative HPLC analysis of the main flavonoids present in weld (Reseda luteola L.)Dyes Pigments57267CrossRefGoogle Scholar
  13. Zhang, X, Laursen, R A 2005Development of mild extraction methods for the analysis of natural dyes in textiles of historical interest using LC-Diode Array Detector-MSAnal Chem772022CrossRefGoogle Scholar
  14. Ferreira, E S B, Quye, A, Hulme, A N, McNab, H 2003LC-Ion Trap MS and PDA-HPLC – Complementary techniques in the analysis of flavonoid dyes in historical textiles: the case study of an 18th century herald’s tabardDyes Hist Archaeol1913Google Scholar
  15. Williams, C A, Harborne, J B, Geiger, H, Hoult, J R S 1999The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory propertiesPhytochemistry51417CrossRefGoogle Scholar
  16. Hulme A N, McNab H, Peggie D A, Quye A (accepted) The chemical characterisation of aged and unaged fibre samples dyed with sawwort (Serratula Tinctoria) using PDA HPLC and HPLC ESI MS. Dyes His Archaeol 22 (in press)Google Scholar
  17. Hofenk de Graaff J H (2004) The colourful past, 1st edn, Abegg-Stiftung and Archetype Publications Ltd, p 147Google Scholar
  18. Wouters, J, Verhecken, A 1989The scale insect dyes (Homoptera: Coccoidea). Species recognition by HPLC and Diode-Array analysis of the dyestuffsAnnals Soc Ent Fr (N.S.)25393Google Scholar
  19. Wouters, J, Verhecken, A 1989The Coccid insect dyes: HPLC and computerized diode array analysis of dyed yarnsStud Conserv34189CrossRefGoogle Scholar
  20. González, M, Méndez, J, Carnero, A, Lobo, M G, Afonso, A 2002Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodologyJ Agr Food Chem506969Google Scholar
  21. Wouters, J, Verhecken, A 1987The chemical nature of flavokermesic acidTetrahedron Lett281199CrossRefGoogle Scholar
  22. Derksen, G C H, Niederländer, H A G, van Beek, T A 2002Analysis of anthraquinones in Rubia tinctorium L. by Liquid Chromatography coupled with Diode-Array UV and mass spectrometric detectionJ Chromatogr A978119CrossRefGoogle Scholar
  23. Mosi, A A, Reimer, K J, Eigendorf, G K 1997Analysis of polyaromatic quinones in a complex environmental matrix using gas chromatography ion trap tandem mass spectrometryTalanta44985CrossRefGoogle Scholar
  24. Cuyckens, F, Claeys, M 2004Mass Spectrometry in the structural analysis of flavonoidsJ Mass Spectrom391CrossRefGoogle Scholar
  25. March, R E, Miao, X, Metcalfe, C D, Stobiecki, M, Marczak, L 2004A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadrupole time-of-flight mass spectrometry at high mass resolutionInt J Mass Spectrom232171CrossRefGoogle Scholar
  26. Stobiecki, M 2000Application of mass spectrometry for identification and structural studies of flavonoid glycosidesPhytochemistry54237CrossRefGoogle Scholar
  27. Sharma, A, Kumar, P, Zaidi, Z H 1998Effect of hydroxy substituents on the electronic absorption spectrum of 9,10-anthraquinoneAsian J Phys7162Google Scholar
  28. Fain, V Y, Zaitsev, B E, Ryabov, M A 2003A quantum-chemical study of prototropic tautomerism in 1-Hydroxy-9,10-anthraquinonesRuss J Gen Chem73621CrossRefGoogle Scholar
  29. von Labhart, H 1957Zur quantitativen beschreibung des einflusses von substituenten auf das absorptionsspektrum ebener molekeln. Anwendung auf anthrachinonHelv Chim Acta401410CrossRefGoogle Scholar
  30. Yoshida, Z, Takabayashi, F 1968Electronic spectra of mono-substituted anthraquinones and solvent effectsTetrahedron24913CrossRefGoogle Scholar
  31. Morgan E D (2004) Biosynthesis in insects, 1st edn. The Royal Society of Chemistry, p 134Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David A. Peggie
    • 1
    • 2
    Email author
  • Alison N. Hulme
    • 1
  • Hamish McNab
    • 1
  • Anita Quye
    • 2
  1. 1.School of ChemistryThe University of EdinburghEdinburghU.K.
  2. 2.Conservation and Analytical Research DepartmentNational Museums ScotlandEdinburghU.K.

Personalised recommendations