Advertisement

Microchimica Acta

, Volume 161, Issue 1–2, pp 81–86 | Cite as

A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots

  • Hongmin Wu
  • Jiangong Liang
  • Heyou Han
Original Paper

Abstract.

A novel method for the determination of Pb2+ has been developed based on quenching of the fluorescence of thiol-capped CdTe quantum dots (QDs) by Pb2+ in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of Pb2+ between 2.0 × 10−6 and 1.0 × 10−4 mol L−1 with a detection limit of 2.7 × 10−7 mol L−1. The relative standard deviation (RSD) was 4.6% for a 4.0 × 10−5 mol L−1 Pb2+ solution (N = 5). As an application, the proposed method was successfully applied to the analysis of Pb2+ in food samples, and the results were satisfactory, i.e. consistent with those of flame atomic absorption spectrometry (FAAS).

Keywords: CdTe quantum dots; Pb2+; quenching of the fluorescence; food samples 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sung, Y H, Huang, S D 2003On-line preconcentration system coupled to electro-thermal atomic absorption spectrometry for simultaneous determination of bismuth, cadmium, and lead in urineAnal Chim Acta495165CrossRefGoogle Scholar
  2. Tan, Q, Wu, P, Wu, L, Hou, X D 2006Sensitive determination of lead by flame atomic absorption spectrometry improved with branched capillary as hydride generator and without phase separationMicrochim Acta155441CrossRefGoogle Scholar
  3. Caper, S G, Gajan, R J, Madzsar, E, Albert, R H, Sanders, M, Zyren, J 1982Determination of lead and cadmium in foods by anodic stripping voltammetry: II. Collaborative studyJ Assoc Off Anal Chem65978Google Scholar
  4. Fang, G Z, Pan, J M 2005Spectrophotometric determination of lead in environmental and biological samples by flow injection microcolumn preconcentration and separation using DBMCSA chromogenic agentChemical Anaczna50925Google Scholar
  5. Baena, J R, Cárdenas, S, Gallego, M, Valcárcel, M 2000Speciation of inorganic lead and ionic alkyllead compounds by GC/MS in prescreened rainwaterAnal Chem721510CrossRefGoogle Scholar
  6. Nome, F, Fiedler, H D, Sapelli, E, Bedendo, G C, Mello, R S, Vargas, L V 2005Determination of environmentally important metal ions by fluorescence quenching in anionic micellar solutionAnalyst130242CrossRefGoogle Scholar
  7. Chan, W C W, Nie, S M 1998Quantum dot bioconjugates for ultrasensitive nonisotopic detectionScience2812016CrossRefGoogle Scholar
  8. Bruchea, M, Moronne, M, Gin, P, Weiss, S, Alivisatos, P 1998Semiconductor nanocrystals as fluorescent biological labelsScience2812013CrossRefGoogle Scholar
  9. Vastarella, W, Nicastri, R 2005Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensorsTalanta66627CrossRefGoogle Scholar
  10. Ye, Z Q, Tan, M Q, Wang, G L, Yuan, J L 2005Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay applicationTalanta65206Google Scholar
  11. Liang, J G, Huang, S, Zeng, D Y, He, Z K, Ji, X H, Ai, X P, Yang, H X 2006CdSe quantum dots as luminescent probes for spironolactone determinationTalanta69126CrossRefGoogle Scholar
  12. Nagl, S, Schaeferling, M, Wolfbeis, O S 2005Fluorescence analysis in microarray technologyMicrochim Acta1511CrossRefGoogle Scholar
  13. Han, H Y, Hu, D H, Liang, J G, Sheng, Z H 2006Study on the interaction between CdSe quantum dots and bovine serum albumin with ultraviolet visible absorption spectroscopyChin Chem Lett17961Google Scholar
  14. Han, H Y, Sheng, Z H, Liang, J G 2006A novel method for the preparation of water-soluble and small-size CdSe quantum dotsMater Lett603782CrossRefGoogle Scholar
  15. Sutherland, A J 2002Quantum dots as luminescent probes in biological systemsCurr Opin Solid State Mater Sci6365CrossRefGoogle Scholar
  16. Cao, Q E, Wang, K T, Hu, Z D, Xu, Q H 1998Synthesis of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(II)Talanta47921CrossRefGoogle Scholar
  17. Isarov, A V, Chrysochoos, J 1997Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) ionsLangmuir133142CrossRefGoogle Scholar
  18. Chen, Y F, Rosenzweig, Z 2002Luminescent CdS quantum dots as selective ion probesAnal Chem745132CrossRefGoogle Scholar
  19. Gattás-Asfura K M, Leblanc R M (2003) Peptide-coated CdS quantum dot for the optical detection of copper(II) and silver(I). Chem Commun 2684Google Scholar
  20. Xie, H Y, Liang, J G, Zhang, Z L, Liu, Y, He, Z K, Pan, D W 2004Luminescent CdSe–ZnS quantum dot as selective Cu2+ probeSpectrochim Acta Part A602527CrossRefGoogle Scholar
  21. Chen, B, Zhong, P 2005A new determining method of copper(II) ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescenceAnal Bioanal Chem381986CrossRefGoogle Scholar
  22. Liang, J G, Ai, X P, He, Z K, Pang, D W 2004Functionalized CdSe quantum dots as selective silver ion chemodosimeterAnalyst129619CrossRefGoogle Scholar
  23. Chen, B, Ying, Y, Zhou, Z T, Zhong, P 2004Synthesis of novel nanocrystals as fluorescent sensors for Hg2+ ionsChem Lett331608CrossRefGoogle Scholar
  24. Gaponik, N P, Talapin, D V, Rogach, A L, Eychmuller, A 2000Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applicationsJ Mater Chem102163CrossRefGoogle Scholar
  25. Rogach, A L, Kotov, N A, Koktysh, D S, Ostrander, J W, Ragoisha, G A 2000Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high quality opalsChem Mater122721CrossRefGoogle Scholar
  26. Wang, D Y, Rogach, A L, Caruso, F 2002Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assemblyNano Lett2857CrossRefGoogle Scholar
  27. Zhang, H, Zhou, Z, Yang, B, Gao, M Y 2003The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticlesJ Phys Chem B1078CrossRefGoogle Scholar
  28. GB/T 5009.12-1996Google Scholar
  29. Yu, W W, Qu, L H, Guo, W Z, Peng, X G 2003Experimental. determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystalsChem Mater152854CrossRefGoogle Scholar
  30. Murray, C B, Norris, D J, Bawendi, M G 1993Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor NanocrystallitesJ Am Chem Soc1158706CrossRefGoogle Scholar
  31. Crosby, G A, Demas, J N 1971The measurement of photolumineseenee quantum yieldJ Phys Chem75991CrossRefGoogle Scholar
  32. Wang, X Y, Ma, Q, Li, Y B, Li, B, Su, X G, Jin, Q H 2005Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dotsAnal Sci Spectrosc50141Google Scholar
  33. Behera, P K, Mukherjee, T, Mishra, A K 1995Simultaneous presence of static and dynamic component in the fluorescence quenching for substituted naphthalene-CCl4 systemJ Lumen65131CrossRefGoogle Scholar
  34. Tang, J, Marcus, R A 2006Determination of energetics and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dotsJ Chem Phys12544703CrossRefGoogle Scholar
  35. Ji, X J, Zheng, J Y, Xu, J M, Rastogi, V K, Cheng, T C, DeFrank, J J, Leblanc, R M 2005(CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxonJ Phys Chem B1093793CrossRefGoogle Scholar
  36. Dong, C Q, Qian, H F, Fang, N H, Ren, J C 2006Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopyJ Phys Chem B11011069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.College of Science, Institute of Chemical Biology, State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations