Microchimica Acta

, Volume 160, Issue 4, pp 413–419 | Cite as

Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay

  • Reşat Apak
  • Kubilay Güçlü
  • Mustafa Özyürek
  • Saliha Esin Çelik
Original Paper


We report on the application of a simple and versatile antioxidant capacity assay for dietary polyphenols, vitamin C and vitamin E utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic oxidant, which we term the CUPRAC (cupric reducing antioxidant capacity) method. It involves mixing the antioxidant solution (directly or after acid hydrolysis) with solutions of CuCl2, neocuproine, and ammonium acetate at pH 7, and measuring the absorbance at 450 nm after 30 min. Slowly reacting antioxidants required an incubation at 50 °C for 20 min for color development. The flavonoid glycosides were hydrolyzed to their corresponding aglycones by refluxing in 1.2 M HCl-containing 50% MeOH for fully exhibiting their antioxidant potencies. Certain compounds also needed incubation after acid hydrolysis for color development. The CUPRAC absorbances of mixture constituents were additive, indicating lack of chemical deviations from Beer’s law. The CUPRAC antioxidant capacities of a wide range of polyphenolics are reported in this work and compared to those found by ABTS/persulfate and Folin assays. The trolox-equivalent capacities of the antioxidants were linearly correlated (r = 0.8) to those found by ABTS but not to those of Folin. The highest antioxidant capacities in the CUPRAC method were observed for epicatechin gallate, epigallocatechin gallate, quercetin, fisetin, epigallocatechin, catechin, caffeic acid, epicatechin, gallic acid, rutin, and chlorogenic acid in this order, in accordance with theoretical expectations. The experiences of other CUPRAC users also are summarized.

Key words: CUPRAC antioxidant capacity; dietary flavonoids; polyphenols; copper(II)-neocuproine; spectrophotometry. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Halliwell, B, Gutteridge, J M C 1989Free radicals in biology and medicineOxford University PressOxford, UKGoogle Scholar
  2. Halliwell, B, Aruoma, O I 1991DNA damage by oxygen-derived species: its mechanisms and measurement in mammalian systemsFEBS Lett2819CrossRefGoogle Scholar
  3. Ames, B N, Shigenaga, M K, Hagen, T M 1993Oxidants, antioxidants, and degenerative diseases of agingProc Natl Acad Sci USA907915CrossRefGoogle Scholar
  4. Ou, B, Huang, D, Hampsch-Woodill, M, Flanagan, J A, Deemer, E K 2002Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative studyJ Agric Food Chem503122CrossRefGoogle Scholar
  5. Huang, D, Ou, B, Prior, R L 2005The chemistry behind antioxidant capacity assaysJ Agric Food Chem531841CrossRefGoogle Scholar
  6. Prior, R L, Wu, X, Schaich, K 2005Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplementsJ Agric Food Chem534290CrossRefGoogle Scholar
  7. Cao, G, Verdon, C P, Wu, A H B, Wang, H, Prior, R L 1995Automated oxygen radical absorbance capacity assay using the COBAS FARA IIClin Chem411738Google Scholar
  8. Miller, N J, Rice-Evans, C A, Davies, M J, Gopinathan, V, Milner, A 1993A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonatesClin Sci84407Google Scholar
  9. Sanchez-Moreno, C, Larrauri, J A, Saura-Calixto, F A 1998A procedure to measure the antiradical efficiency of polyphenolsJ Sci Food Agric76270CrossRefGoogle Scholar
  10. Folin, O, Ciocalteu, V 1927On tyrosine and tryptophane determinations in proteinsJ Biol Chem73627Google Scholar
  11. Singleton, V L, Orthofer, R, Lamuela-Raventos, R M 1999Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagentMeth Enzymol299152CrossRefGoogle Scholar
  12. Benzie, I F F, Strain, J J 1996The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assayAnal Biochem23970CrossRefGoogle Scholar
  13. Apak, R, Güçlü, K, Özyürek, M, Karademir, S E 2004Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC methodJ Agric Food Chem527970CrossRefGoogle Scholar
  14. Apak, R, Güçlü, K, Özyürek, M, Karademir, S E, Altun, M 2005Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC methodFree Radical Res39949CrossRefGoogle Scholar
  15. Re, R, Pellegrini, N, Proteggente, A, Pannala, A, Yang, M, Rice-Evans, C 1999Antioxidant activity applying an improved ABTS radical cation decolorization assayFree Radical Biol Med261231CrossRefGoogle Scholar
  16. Rice-Evans, C A, Miller, N J, Paganga, G 1997Antioxidants properties of phenolic compoundsTrends Plant Sci2152CrossRefGoogle Scholar
  17. Castelluccio, C, Bolwell, G P, Gerrish, C, Rice-Evans, C 1996Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidantBiochem J316691Google Scholar
  18. Kanski, J, Aksenova, M, Stoyanova, A, Butterfield, D A 2002Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studiesJ Nutr Biochem13273CrossRefGoogle Scholar
  19. Gorinstein, S, Leontowicz, M, Leontowicz, H, Najman, K, Namiesnik, J, Park, Y-S, Jung, S-T, Kang, S-G, Trakhtenberg, S 2006Supplementation of garlic lowers lipids and increases antioxidant capacity in plasma of ratsNutr Res26362CrossRefGoogle Scholar
  20. Park, Y-S, Jung, S-T, Kang, S-G, Delgado-Licon, E, Katrich, E, Tashma, Z, Trakhtenberg, S, Gorinstein, S 2006Effect of ethylene treatment on kiwifruit bioactivityPlant Foods Human Nutr61151CrossRefGoogle Scholar
  21. Fruhwirth, G O, Wagner, F S, Hermetter, A 2006The alpha PROX assay: fluorescence screening of the inhibitory effects of hydrophilic antioxidants on protein oxidationAnal Bioanal Chem384703CrossRefGoogle Scholar
  22. Mazor, D, Greenberg, L, Shamir, D, Meyerstein, D, Meyerstein, N 2006Antioxidant properties of Bucillamine: Possible mode of actionBiochem Biophys Res Commun3491171CrossRefGoogle Scholar
  23. Tütem, E, Apak, R 1991Simultaneous spectrophotometric determination of cystine and cysteine in amino acid mixtures using copper(II)-neocuproine reagentAnal Chim Acta255121CrossRefGoogle Scholar
  24. Apak, R, Güçlü, K, Özyürek, M, Karademir, S E, Ercag, E 2006The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teasInt J Food Sci Nutr57292CrossRefGoogle Scholar
  25. Güçlü, K, Altun, M, Özyürek, M, Karademir, S E, Apak, R 2006Antioxidant capacity of fresh, sun- and sulfited-dried Malatya apricot (Prunus Armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methodsInt J Food Sci Technol4176CrossRefGoogle Scholar
  26. Tütem, E, Apak, R, Baykut, F 1991Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II)Analyst11689CrossRefGoogle Scholar
  27. Halliwell, B, Gutteridge, J M C 1984Oxygen toxicity, oxygen radicals, transition metals and diseaseBiochem J2191Google Scholar
  28. Marshall, L E, Graham, D R, Reich, K A, Sigman, D S 1981Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificityBiochem20244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Reşat Apak
    • 1
  • Kubilay Güçlü
    • 1
  • Mustafa Özyürek
    • 1
  • Saliha Esin Çelik
    • 1
  1. 1.Department of Chemistry, Faculty of EngineeringIstanbul UniversityIstanbulTurkey

Personalised recommendations