Microchimica Acta

, Volume 159, Issue 1–2, pp 1–17 | Cite as

Biosensors based on direct electron transfer in redox proteins

Review

Abstract.

In biosensors based on direct electron transfer in redox proteins, efficient electron-transfer pathways between the immobilized redox protein and the electrode surface have to be established so to allow a fast electron transfer and concomitantly avoiding free-diffusing redox species. In this review, prerequisites for the direct electron transfer of redox proteins and immobilization of redox proteins on the electrode surfaces are addressed. Based on the specific nature of different proteins and non-manual immobilization procedures, possible biosensor designs are discussed, namely biosensors based on (1) ferritin; (2) cytochrome c; (3) myoglobin; (4) hemoglobin; (5) horseradish peroxidase; (6) catalase; (7) glucose oxidase; and (8) xanthine oxidase.

Key words: Biosensors; direct electron transfer; redox proteins. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thevenot, D R, Toth, K, Durst, R A, Wilson, G S 2001Electrochemical biosensors: recommended definitions and classificationAnal Lett34635CrossRefGoogle Scholar
  2. Gorton, L 1995Carbon paste electrodes modified with enzymes, tissues, and cellsElectroanalysis723CrossRefGoogle Scholar
  3. Gorton, L, Lindgren, A, Larsson, T, Munteanu, F D, Ruzgas, T, Gazaryan, I 1999Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensorsAnal Chim Acta40091CrossRefGoogle Scholar
  4. Marcus, R A, Sutin, N 1985Electron transfer in chemistry and biologyBiochim Biophys Acta811265Google Scholar
  5. Marcus, R A 1993Electron transfer reactions in chemistry theory and experimentAngew Chem Int Ed Engl321111CrossRefGoogle Scholar
  6. Carter, M T, Rowe, G K, Richardson, J N, Tender, L M, Terrill, R H, Murray, R W 1995Distance dependence of the low-temperature electron transfer kinetics of Žferro-cenylcarboxy-terminated alkanethiol monolayersJ Am Chem Soc1172896CrossRefGoogle Scholar
  7. Heller A, Degani Y (1998) Redox chemistry and interfacial behavior of biological molecules. Plenum Publishing, p 151Google Scholar
  8. Armstrong, F A, Heering, H A, Hirst, J 1997Reactions of complex metalloproteins studied by protein-film voltammetryChem Soc Rev26169CrossRefGoogle Scholar
  9. Heering, H A, Weiner, J H, Armstrong, F A 1997Direct detection and measurement of electron relays in a multicentered enzyme: voltammetry of electrode-surface films of E. coli fumarate reductase, an iron-sulfur flavoproteinJ Am Chem Soc11911628CrossRefGoogle Scholar
  10. Shen, B, Martin, L L, Butt, J N, Armstrong, F A, Stout, C D, Jensen, G M, Stephens, P J, Mar, G N L, Gorst, C M, Burgess, B K 1993Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe-4S] clusterJ Biol Chem26825928Google Scholar
  11. Hirst, J, Jillian, L C D, Guy, N L J, Mary, A K, Barbara, K B, Armstrong, F A 1998Kinetics and mechanism of redox-coupled, long-range proton transfer in an iron-sulfur protein. Investigation by fast-scan protein-film voltammetryJ Am Chem Soc1207085CrossRefGoogle Scholar
  12. Chen, K, Hirst, J, Camba, R, Bonagura, C A, Stout, C D, Burgess, B K, Armstrong, F A 2000Atomically defined mechanism for proton transfer to a buried redox centre in a proteinNature405814CrossRefGoogle Scholar
  13. Dave, B C, Dunn, B, Valentine, J S, Zink, J I 2001Sol-gel encapsulation for biosensorsAnal Chem661120ACrossRefGoogle Scholar
  14. Ellerby, L M, Nishida, C R, Nishida, F, Yamanaka, S A, Dunn, B, Valentine, J S, Zink, J I 1992Encapsulation of proteins in transparent porous silicate glasses prepared by the sol–gel methodScience2551113CrossRefGoogle Scholar
  15. Avnir, D 1995Organic chemistry within ceramic matrixes: doped sol–gel materialsAcc Chem Res28328CrossRefGoogle Scholar
  16. Das, T K, Khan, I, Rousseau, D L, Friedman, J M 1998Preservation of the native structure in myoglobin at low pH by sol–gel encapsulationJ Am Chem Soc12010268CrossRefGoogle Scholar
  17. Ji, Q, Lloyd, C R, Ellis, W R, Eyring, E M 1998Sol-gel-encapsulated heme proteins. Evidence for CO2 adductsJ Am Chem Soc120221CrossRefGoogle Scholar
  18. Sottini, S, Viappiani, C, Ronda, L, Bettati, S, Mozzarelli, A 2004CO rebinding kinetics to myoglobin- and R-state-hemoglobin-doped silica gels in the presence of glycerolJ Phys Chem B1088475CrossRefGoogle Scholar
  19. Navati, M S, Ray, A, Shamir, J, Friedman, J M 2004Probing solvation-shell hydrogen binding in glassy and sol–gel matrixes through vibronic sideband luminescence spectroscopyJ Phys Chem B1081321CrossRefGoogle Scholar
  20. Samuni, U, Dantsker, D, Khan, I, Friedman, A J, Peterson, E, Friedman, J M 2002Spectroscopically and kinetically distinct conformational populations of sol–gel-encapsulated carbonmonoxy myoglobinJ Biol Chem27725783CrossRefGoogle Scholar
  21. Wang, Q L, Lu, G X, Yang, B J 2004Myoglobin/sol–gel film modified electrode: direct electrochemistry and electrochemical catalysisLangmuir201342CrossRefGoogle Scholar
  22. Nocek, J M, Hatch, S L, Seifert, J L, Hunter, G W, Thomas, D D, Hoffman, B M 2002Interprotein electron transfer in a confined space: uncoupling protein dynamics from electron transfer by sol–gel encapsulationJ Am Chem Soc1249404CrossRefGoogle Scholar
  23. Nadzhafova, O Y, Zaitsev, V N, Drozdova, M V, Vaze, A, Rusling, J F 2004Heme proteins sequestered in silica sol–gels using surfactants feature direct electron transfer and peroxidase activityElectrochem Commun6205CrossRefGoogle Scholar
  24. Wang, Q, Lu, G, Yang, B 2004Myoglobin/sol–gel film modified electrode: direct electrochemistry and electrochemical catalysisLangmuir201342CrossRefGoogle Scholar
  25. Ray, A, Feng, M L, Tachikawa, H 2005Direct electrochemistry and raman spectroscopy of sol–gel-encapsulated myoglobinLangmuir217456CrossRefGoogle Scholar
  26. Kotyk, A, Janacek, K, Koryta, J 1988Biophysical chemistry of membrane functionWileyChichester, UKGoogle Scholar
  27. Fendler, J H 1982Membrane mimetic chemistryWileyNew YorkGoogle Scholar
  28. Kunitake, T, Shimomura, M, Kajiyama, T, Harada, A, Okuyama, K, Takayanagi, M 1984Ordered cast films of an azobenzene-containing molecular membraneThin Solid Films121L89CrossRefGoogle Scholar
  29. Nassar, A E F, Willis, W S, Rusling, J F 1995Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromoleculesAnal Chem672386CrossRefGoogle Scholar
  30. Armstrong, F A 1990Bioinorganic chemistry, structure and bondingSpringerBerlin137CrossRefGoogle Scholar
  31. Bayachou, M, Elkbir, L, Farmer, P J 2000Catalytic two-electron reductions of N2O and N3 by myoglobin in surfactant filmsInorg Chem39289CrossRefGoogle Scholar
  32. Munge, B, Das, S K, Ilagan, R, Pendon, Z, Yang, J, Frank, H A, Rusling, J F 2003Electron transfer reactions of redox cofactors in spinach photosystem I reaction center protein in lipid films on electrodesJ Am Chem Soc12512457CrossRefGoogle Scholar
  33. Zhao, J 1992Direct electron transfer at horse peroxidase-colloidal gold modified electrodeJ Electroanal Chem327109CrossRefGoogle Scholar
  34. Davis, J J, Coles, R J, Hill, H A O 1997Protein electrochemistry at carbon nanotube electrodesJ Electroanal Chem440279CrossRefGoogle Scholar
  35. Wang, G, Xu, J J, Chen, H Y 2002Interfacing cytochrome c to electrodes with a DNA – carbon nanotube composite filmElectrochem Commun4506Google Scholar
  36. Wang, J X, Li, M X, Shi, Z J, Li, N Q, Gu, Z N 2002Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubesAnal Chem741993CrossRefGoogle Scholar
  37. Wang, S G, Zhang, Q, Wang, R L, Yoon, S F 2003A novel multi-walled carbon nanotube-based biosensor for glucose detectionBiochem Biophys Res Commun311572CrossRefGoogle Scholar
  38. Zhao, G C, Zhang, L, Wei, X W, Yang, Z S 2003A novel multi-walled carbon nanotube-based biosensor for glucose detectionElectrochem Commun5825CrossRefGoogle Scholar
  39. Gooding, J J, Wibowo, R, Liu, J, Yang, W R, Losic, D, Orbons, S, Mearns, F J, Shapter, J G, Hibbert, D B 2003Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysisJ Am Chem Soc1259006CrossRefGoogle Scholar
  40. McEvoy, T M, Peńa, D J, Musick, M D, Richardson, J N 2004A fractal analysis of colloidal Au nanoparticle electrodesJ Electroanal Chem565121CrossRefGoogle Scholar
  41. Cai, H, Xu, C, He, P G, Fang, Y Z 2001Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNAJ Electroanal Chem51078CrossRefGoogle Scholar
  42. Liu, Y G, Yin, F, Long, Y M, Zhang, Z H, Yao, S Z 2003Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniquesJ Colloid Interf Sci25875CrossRefGoogle Scholar
  43. Wang, L, Wang, E K 2004Direct electron transfer between cytochrome c and a gold nanoparticles modified electrodeElectrochem Commun649CrossRefGoogle Scholar
  44. Raj, C R, Okajima, T, Ohsaka, T 2003Gold nanoparticle arrays for the voltammetric sensing of dopamineJ Electroanal Chem543127CrossRefGoogle Scholar
  45. Ju, H X, Liu, S Q, Ge, B X, Lisdat, F, Scheller, F W 2002Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrode and its electrocatalytic activityElectroanalysis14141CrossRefGoogle Scholar
  46. Mohamed, E S, Ohsaka, T 2002Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodesElectrochim Acta264255Google Scholar
  47. Hayat, M A 1989In colloidal gold: principles, methods and applicationsAcademic PressSan DiegoGoogle Scholar
  48. Lei, C X, Wang, H, Shen, G L, Yu, R Q 2004Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucoseElectroanalysis16736CrossRefGoogle Scholar
  49. Xiao, Y, Ju, H X, Chen, H Y 1999Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayerAnal Chim Acta39173CrossRefGoogle Scholar
  50. Armstrong, F A, Wilson, G S 2000Recent developments in faradaic bioelectrochemistryElectrochim Acta452623CrossRefGoogle Scholar
  51. Gao Q M, Suib S L, Rusling J F (2002) Colloids, helices, and patterned films made from heme proteins and manganese oxide. Chem Commun 2254Google Scholar
  52. Lvov, Y, Munge, B, Giraldo, O, Ichinose, I, Suib, S L, Rusling, J F 2000Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorptionLangmuir168850CrossRefGoogle Scholar
  53. Zhou, Y L, Hu, N F, Zeng, Y H, Rusling, J F 2002Heme protein-clay films: direct electrochemistry and electrochemical catalysisLangmuir18211CrossRefGoogle Scholar
  54. Topoglidis, E, Campbell, C J, Cass, A E G, Durrant, J R 2001Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensingLangmuir177899CrossRefGoogle Scholar
  55. Li, Q W, Luo, G A, Feng, J 2001Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 filmElectroanalysis13359CrossRefGoogle Scholar
  56. Meier, K R, Grätzel, M 2002Redox targeting of oligonucleotides anchored to nanocrystalline TiO2 films for DNA detectionChem Phys Chem3371Google Scholar
  57. Ikeda, O, Ohtani, M, Yamaguchi, T, Komura, A 1998Direct electrochemistry of cytochrome c at a glassy carbon electrode covered with a microporous alumina membraneElectrochim Acta43833CrossRefGoogle Scholar
  58. Topoglidis, E, Cass, A E G, O’Regan, B, Durrant, J R 2001Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO filmsJ Electroanal Chem51720CrossRefGoogle Scholar
  59. Ulman, A 1996Formation and structure of self-assembled monolayersChem Rev961533CrossRefGoogle Scholar
  60. Wink, T, Zulien, S J, Bult, A, Bennekom, W P 1997Self-assembled monolayers for biosensorsAnalyst12243RCrossRefGoogle Scholar
  61. Allen, P M, Hill, H A O, Walton, N J 1984Specific modifiers for the promotion of direct electrochemistry of cytochrome cJ Electroanal Interface Electrochem17869Google Scholar
  62. Taniguchi Y, Toyosawa K, Yamaguchi H, Yasukouchu K (1982) Reversible electrochemical reduction and oxidation of cytochrome c at a bis(4-pyridyl) disulphide-modified gold electrode. J Chem Soc Chem Commun 1032Google Scholar
  63. Hill, H A O, Page, D J, Walton, N J, Whitford, D J 1985Direct electrochemistry, at modified gold electrodes, of redox proteins having negatively-charged binding domains: spinach plastocyanin and a multi-substituted carboxydinitrophenyl derivative of horse heart cytochrome cJ Electroanal Interface Electrochem187315Google Scholar
  64. Wong, L S, Vilker, V L, Yap, W T, Reipa, Y 1995Characterization of mercaptoethylamine-modified gold electrode surface and analyses of direct electron transfer to putidaredoxinLangmuir114818CrossRefGoogle Scholar
  65. Eddowes, M J, Hill, H A O 1979Electrochemistry of horse heart cytochrome cJ Am Chem Soc1014461CrossRefGoogle Scholar
  66. Diógenes, I C N, Nart, F C, Temperini, M L A, Moreira, I S 2001The [Ru(CN)5(pyS)]4-complex, an efficient self-assembled monolayer for the cytochrome c heterogeneous electron transfer studiesInorg Chem404884CrossRefGoogle Scholar
  67. Niki, K, Hardy, W R, Hill, M G, Li, H, Sprinkle, J R, Margoliash, E, Fujita, K, Tanimura, R, Nakamura, N, Richards, H J H, Gray, H B 2003Coupling to lysine-13 promotes electron tunneling through carboxylate-terminated alkanethiol self-assembled monolayers to cytochrome cJ Phys Chem B1079947CrossRefGoogle Scholar
  68. Thiel, E C 1987Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganismsAnn Rev Biochem56289CrossRefGoogle Scholar
  69. Topham, R, Goger, M, Pearce, K, Schultz, P 1989The immobilization of ferritin iron by liver cytosol. A comparision of xanthine and NADH as reducing substratesBiochem J261137Google Scholar
  70. Xu, B, Chasteen, N D 1991Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formationJ Biol Chem26619965Google Scholar
  71. Martin, D, Monheit, A, Niichel, J, Peterson, C, Campbell, H, Zapien, C 1997Electron transfer of horse spleen ferritin at gold electrodes modified by self-assembled monolayersJ Electroanal Chem420279CrossRefGoogle Scholar
  72. Pyon, S, Cherry, J, Bjornsen, A, Zapien, C 1999Uptake and release of iron by ferritin adsorbed at tin-doped indium oxide electrodesLangmuir157040CrossRefGoogle Scholar
  73. Zapien, C, Johnson, A 2000Direct electron transfer of ferritin adsorbed at bare gold electrodesJ Electroanal Chem494114CrossRefGoogle Scholar
  74. Wu, Y H, Hu, S S 2004Direct electron transfer of ferritin in dihexadecylphosphate on an Au film electrode and its catalytic oxidation toward ascorbic AcidAnal Chim Acta52737CrossRefGoogle Scholar
  75. Hinnen, C, Parsons, R, Niki, K 1983Electrochemical and spectroreflectance studies of the adsorbed horse heart cytochrome c and cytochrome c3 from D. Vulgaris, Miyazaki strain, at gold electrodeJ Electroanal Chem147329CrossRefGoogle Scholar
  76. Reed, D E, Hawkridge, F M 1987Direct electron transfer reactions of cytochrome c at silver electrodesAnal Chem592334CrossRefGoogle Scholar
  77. Armstrong, F A, Bond, A M, Hill, H A O, Oliver, B N, Psalti, I S M 1989Electrochemistry of cytochrome c, plastocyanin, and ferredoxin at edge- and basal-plane graphite electrodes interpreted via a model based on electron transfer at electroactive sites of microscopic dimensions in sizeJ Am Chem Soc1119185CrossRefGoogle Scholar
  78. Kasmi, A E, Wallace, J M, Bowden, E F, Binet, S M, Linderman, R J 1998Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayersJ Am Chem Soc120225CrossRefGoogle Scholar
  79. Wei, J, Liu, H, Dick, A R, Yamamoto, H, He, Y, Waldeck, D H 2002Direct wiring of cytochrome c’s heme unit to an electrode: electrochemical studiesJ Am Chem Soc1249591CrossRefGoogle Scholar
  80. Park, H, Park, J, Shim, Y 2001Electrochemical and in situ UV-visible spectroscopic behavior of cytochrome c at a cardiolipin-modified electrodeJ Electroanal Chem51467CrossRefGoogle Scholar
  81. Chen, T, Guo, Y Z, Dong, S J 1995Voltammetry of cytochrome c entrapped in hydrogel membrane on graphite electrodeBioelectrochemistry37125CrossRefGoogle Scholar
  82. Gleria, K D, Hill, H A O, Lowe, V J, Page, D J 1986Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodesJ Electroanal Chem213333CrossRefGoogle Scholar
  83. Collinson, M, Bowden, E F 1992Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodesLangmuir81247CrossRefGoogle Scholar
  84. Song, S H, Clark, R A, Bowden, E F 1993Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on goldLangmuir976564Google Scholar
  85. Ruzgas, T, Wong, L, Gaigalas, A K, Vilker, V L 1998Electron transfer between surface-confined cytochrome c and an n-acetylcysteine-modified gold electrodeLangmuir147298CrossRefGoogle Scholar
  86. Mckenzie, K, Marken, F 2003Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytateLangmuir194327CrossRefGoogle Scholar
  87. Wang, L, Wang, E K 2004Direct electron transfer between cytochrome c and a gold nanoparticles modified electrodeElectrochem Commun649CrossRefGoogle Scholar
  88. Ju, H, Liu, S, Ge, B, Lisdat, F, Scheller, F 2002Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activityElectroanalysis14141CrossRefGoogle Scholar
  89. Wu, Y H, Hu, S S 2005The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome cColloids and Surfaces B: Biointerfaces41299CrossRefGoogle Scholar
  90. Wittenberg, B A, Wittenberg, J B, Caldwell, P R B 1975Role of myoglobin in the oxygen supply to red skeletal muscleJ Biol Chem2509038Google Scholar
  91. Wittenberg, B A, Wittenberg, J B 1987Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytesProc Natl Acad Sci USA847503CrossRefGoogle Scholar
  92. Edmundson, A B, Hirs, C H W 1962On the structure of sperm whale myglobin. I. The amino acid composition and terminal groups of the chromatographically purified proteinJ Mol Biol5663CrossRefGoogle Scholar
  93. Taniguchi, T, Watanable, K, Tominage, M, Hawkridge, F M 1992J Electroanal Chem333331CrossRefGoogle Scholar
  94. Ciureanu, M, Goldstein, S, Mateescu, M A 1998Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodesJ Electrochem Soc145533CrossRefGoogle Scholar
  95. Zhang, Z, Rusling, J F 1997Electron transfer between myoglobin and electrodes in thin films of phosphatidylcholines and dihexadecylphosphateBiophys Chem63133CrossRefGoogle Scholar
  96. Liu, X J, Shang, L B, Sun, Z Y, Li, G X 2005Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxideJ Biochem Biophys Methods62143CrossRefGoogle Scholar
  97. Huang, H, Hu, N F, Zeng, Y H, Zhou, G 2002Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer filmsAnal Biochem308141CrossRefGoogle Scholar
  98. Liu, H H, Tian, Z Q, Lu, Z X, Zhang, Z L, Zhang, M, Pang, D W 2004Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel filmsBiosens Bioelectron20294CrossRefGoogle Scholar
  99. Li, S, Hu, N F 2004Heme proteins films with polyamidoamine dentrimer: direct electrochemistry and electrocatalysisBiochimica et Biophysica Acta160823CrossRefGoogle Scholar
  100. Zhou, Y L, Hu, N F, Zeng, Y H, Rusling, J F 2002Heme protein-clay films: direct electrochemistry and electrochemical catalysisLangmuir18211CrossRefGoogle Scholar
  101. Nassar, A E F, Zhang, Z, Hu, N, Rusling, J F, Kumosinski, T F 1997Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like FilmsJ Phys Chem B1012224CrossRefGoogle Scholar
  102. Rusling, J F, Nassar, A E F 1993Enhanced electron transfer for myoglobin in surfactant films on electrodesJ Am Chem Soc11511891CrossRefGoogle Scholar
  103. Nassar, A E F, Willis, W S, Rusling, J F 1995Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromoleculesAnal Chem672386CrossRefGoogle Scholar
  104. Rusling, J F, Nassar, A E F 1994Electron transfer rates in electroactive films from normal pulse voltammetry myoglobin-surfactant filmsLangmuir102800CrossRefGoogle Scholar
  105. Nassar, A E F, Narikiyo, Y, Sagara, T, Nakashima, N, Rusling, J F 1995Electrochemical properties of myglobin embedded in langmuir-blodgett and cast films of synthetic lipidsJ Chem Soc Faraday Trans911775CrossRefGoogle Scholar
  106. Nassar, A E F, Bobbitt, J M, Stuart, J D, Rusling, J F 1995Catalytic reduction of organohalide pollutants by myoglobin in a biomembrane-like surfactant filmJ Am Chem Soc11710986CrossRefGoogle Scholar
  107. Lin, R, Bayachou, M, Greaves, J, Farmer, P J 1997Nitrite reduction by myoglobin in surfactant filmsJ Am Chem Soc11912689CrossRefGoogle Scholar
  108. Bayachou, M, Lin, R, Cho, W, Farmer, P J 1998Electrochemical reduction of NO by myoglobin in surfactant film: characterization and reactivity of the nitroxyl (NO) adductJ Am Chem Soc1209888CrossRefGoogle Scholar
  109. Ray, A, Feng, M L, Tachikawa, H 2005Direct electrochemistry and raman spectroscopy of sol–gel-encapsulated myoglobinLangmuir217456CrossRefGoogle Scholar
  110. Lvov, Y M, Lu, Z Q, Schenkman, J B, Zu, X L 1998Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyionsJ Am Chem Soc1204073CrossRefGoogle Scholar
  111. Liu, A H, Wei, M D, Honma, I, Zhou, H S 2005Direct electrochemistry of myoglobin in titanate nanotubes filmAnal Chem778068CrossRefGoogle Scholar
  112. Wang, Q L, Lu, G X, Yang, B J 2004Myoglobin/sol–gel film modified electrode: direct electrochemistry and electrochemical catalysisLangmuir201342CrossRefGoogle Scholar
  113. Zhao, G C, Xian, L Z, Wei, W, Yang, Z S 2003Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysisElectrochem Commun5825CrossRefGoogle Scholar
  114. Lin, R, Bayachou, M, Greaves, J, Farmer, P J 1997Nitrite reduction by myoglobin in surfactant filmsAm Chem Soc1192689Google Scholar
  115. Wu, Y H, Shen, Q C, Hu, S S 2006Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin filmAnal Chim Acta558179CrossRefGoogle Scholar
  116. Scheller, F, Jaenchen, M, Etzold, G, Will, H 1974A conformational study of poly-l-lysine, metmyoglobin, cytochrome c, methemoglobin and glycogen phosphorylase b adsorbed at mercury electrodeBioelectrochem Bioenerg1478CrossRefGoogle Scholar
  117. Scheller, F 1977Functional properties of adsorbed hemoproteinsBioelectrochem Bioenerg4490CrossRefGoogle Scholar
  118. Kuznetsov, B A, Shumakovich, G P, Mestechkina, N M 1977The reduction mechanism of cytochrome c and methemoglobin on mercury electrodeBioelectrochem Bioenerg4512CrossRefGoogle Scholar
  119. Ye, J, Baldwin, R P 1988Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blueAnal Chem602263CrossRefGoogle Scholar
  120. Han, X, Huang, W, Jia, J, Dong, S, Wang, E 2002Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and itscatalysis to H2O2Biosens Bioelectron17741CrossRefGoogle Scholar
  121. Kawahara, N Y, Ohno, H 1998Thermal stability and electron transfer reaction of PEO-modified hemoglobin cast on an ITO electrode in polymer electrolytesElectrochim Acta431493CrossRefGoogle Scholar
  122. Lu, Z, Dong, S 1990Rapid redox reaction of hemoglobin at methylene green modified platinum electrodeElctrochim Acta351139CrossRefGoogle Scholar
  123. Rusling, J F, Nassar, A E F 1993Enhanced electron transfer for myoglobin in surfactant films on electrodesAm Chem Soc11511891CrossRefGoogle Scholar
  124. Rusling, J F 1998Enzyme bioelectrochemistry in cast biomembrane like filmsAcc Chem Res31363CrossRefGoogle Scholar
  125. Nassar, A E F, Willis, W S, Rusling, J F 1995Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromoleculesAnal Chem672386CrossRefGoogle Scholar
  126. Ciureanu, M, Goldstein, S, Mateescu, M A 1998Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodesElectrochem Soc145533CrossRefGoogle Scholar
  127. Chen, X, Hu, N, Zeng, Y, Rusling, J F, Yang, J 1999Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clayLangmuir157022CrossRefGoogle Scholar
  128. Ma, H, Hu, N, Rusling, J F 2000Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodesLangmuir164969CrossRefGoogle Scholar
  129. Sun, H, Hu, N, Ma, H 2000Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodeElectroanalysis121064CrossRefGoogle Scholar
  130. Fan, C, Wang, H, Sun, S, Zhu, D, Wagner, G, Li, G 2001Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membraneAnal Chem732850CrossRefGoogle Scholar
  131. Zhao, J, Henkens, R W, Stonehuerner, J, O’daly, J P, Crumbliss, A L 2004Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodesJ Electroanal Chem327109CrossRefGoogle Scholar
  132. Xiao, Y, Ju, H X, Chen, H Y 2004Direct electrochemistry of HRP immobilized an Au colloid-cysteamine monolayer modified gold electrodeAnal Biochem27822Google Scholar
  133. Shipway, A N, Lahav, M, Willner, I 2000Nanostructured gold colloid electrodesAdv Mat12993CrossRefGoogle Scholar
  134. Gu, H Y, Yu, A M, Chen, H Y 2001Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold ElectrodeJ Electroanal Chem516119CrossRefGoogle Scholar
  135. Liu, S Q, Dai, Z H, Chen, H Y, Ju, H X 2004Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensorBiosens Bioelectron19963CrossRefGoogle Scholar
  136. Decher, G 1997Computational design of hierarchically structured materialsScience2771232CrossRefGoogle Scholar
  137. Ma, H, Hu, N, Rusling, J F 2000Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodesLangmuir164969CrossRefGoogle Scholar
  138. Lu, Q, Chen, X X, Wu, Y H, Hu, S S 2005Studies on direct electron transfer and biocatalytic properties of heme proteins in lecithin filmBiophys Chem11755CrossRefGoogle Scholar
  139. Zhou, Y, Li, Z, Hu, N, Zeng, Y, Rusling, J F 2002Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activityLangmuir188573CrossRefGoogle Scholar
  140. Ruzgas, T, Csoregi, E, Emneus, J, Gorton, L, Marko-Varga, G 1996Peroxidase-modified electrodes: fundamentals and applicationAnal Chim Acta330123CrossRefGoogle Scholar
  141. Ferri, T, Poscia, A, Santucci, R 1998Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part I. A voltammetric and spectroscopic studyBioelectrochem Bioenerg44177CrossRefGoogle Scholar
  142. Chen, X, Ruan, C, Kong, J, Deng, J 2000Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrodeAnal Chim Acta41289CrossRefGoogle Scholar
  143. Chen, X, Peng, X, Kong, J, Deng, J 2000Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant filmJ Electroanal Chem48026CrossRefGoogle Scholar
  144. Xiao, Y, Ju, H, Chen, H 2000Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrodeAnal Biochem27822CrossRefGoogle Scholar
  145. Zhao, Y, Zhang, W, Chen, H, Luo, Q, Li, S 2002Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrodeSens Actuators B87168CrossRefGoogle Scholar
  146. Tang, J, Wang, B, Wu, Z, Han, X, Dong, S, Wang, E 2003Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxideBiosens Bioelectron18867CrossRefGoogle Scholar
  147. Chattopadhyay, K, Mazumdar, S 2000Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactantsBioelectrochemistry5317CrossRefGoogle Scholar
  148. Huang, R, Hu, N 2001Direct electrochemistry and electrocatalysis with horseradish peroxidase in eastman AQ filmsBioelectrochemistry5475CrossRefGoogle Scholar
  149. Zhao, Y D, Zhang, W D, Chen, H, Luo, Q M, Li, S F Y 2002Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrodeSens Actuators B87168CrossRefGoogle Scholar
  150. Sun, D M, Cai, C X, Li, G X, Xing, W, Lu, T H 2004Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbonJ Electroanal Chem566415CrossRefGoogle Scholar
  151. Zhang, Y, He, P L, Hu, N F 2004Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysisElectrochim Acta491981CrossRefGoogle Scholar
  152. Xu, Y X, Wang, F, Chen, X X, Hu, S S 2006Direct electrochemistry and electrocatalysis of heme-protein based on N,N-dimethylformamide film electrodeTalanta70651CrossRefGoogle Scholar
  153. Nicholls, P, Schonbaum, G R 1963The enzymesAcademic PressOrlando158Google Scholar
  154. Fita, I, Silva, A M, Murthy, M R N, Rossmann, M G 1986The refined structure of beef liver catalase at 2.5 Å resolutionActa Crystallogr Sect B: Struct Sci42497CrossRefGoogle Scholar
  155. Schonbaum, G R, Chance, B 1976The enzymesAcademic PressNew York363Google Scholar
  156. Chuang, W J, VanWart, H E 1992Resonance raman spectra of horseradish peroxidase and bovine liver catalase compound I species. Evidence for predominant 2A2u pi-cation radical ground state configurationsJ Biol Chem26713293Google Scholar
  157. Chen, X, Xie, H, Kong, J, Deng, J 2001Characterization for didodecyldimethylammonium bromide liquid crystal film entrapping catalase with enhanced direct electron transfer rateBiosens Bioelectron16115CrossRefGoogle Scholar
  158. Zhang, Z, Chouchane, S, Magliozzo, R S, Rusling, J F 2002Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid filmsAnal Chem74163CrossRefGoogle Scholar
  159. Lu, H Y, Li, Z, Hu, N F 2003Direct voltammetry and electrocatalytic properties of catalase incorporated in polyacrylamide hydrogel filmsBiophys Chem104623CrossRefGoogle Scholar
  160. Hecht, H J, Kalisz, H M, Hendle, J, Schmid, R D, Schomburg, D 1993Crystal structure of glucose oxidase from Aspergillus Niger refined at 2.3 Å resolutionJ Mol Biol229153CrossRefGoogle Scholar
  161. Chen, X, Hu, Y, Wilson, G S 2002Glucose microbiosensor based on alumina sol–gel matrix/electropolymerized composite membraneBiosens Bioelectron171005CrossRefGoogle Scholar
  162. Zhu, L, Li, Y, Tian, F, Xu, B, Zhu, G 2002Electrochemiluminescent determination of glucose with a sol–gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensorSens Actuat B: Chem84265CrossRefGoogle Scholar
  163. Reiter, S, Habermüller, K, Schuhmann, W 2001A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole filmsSens Actuators B: Chem79150CrossRefGoogle Scholar
  164. Piro, B, Dang, L A, Pham, M C, Fabiano, S, Tran-Minh, C 2001A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT)J Electroanal Chem512101CrossRefGoogle Scholar
  165. Garjonyte, R, Malinauskas, A 2000Amperometric glucose biosensors based on prussian blue- and polyaniline-glucose oxidase modified electrodesBiosens Bioelectron15445CrossRefGoogle Scholar
  166. Ban, K, Ueki, T, Tamada, Y, Saito, T, Imabayashi, S, Watanabe, M 2003Electrical communication between glucose oxidase and electrodes mediated byphenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surfaceAnal Chem75910CrossRefGoogle Scholar
  167. Savitri, D, Mitra, C K 2000Electrochemistry of reconstituted glucose oxidase on carbon paste electrodesBioelectrochem Bioenerg4767CrossRefGoogle Scholar
  168. Jiang L, McNeil C J, Cooper J M (1995) Direct electron transfer reactions of glucose oxidase immobilized at a self-assembled monolayer. J Chem Soc Chem Commun 1293Google Scholar
  169. Guiseppi-Elie, A, Lei, C H, Baughman, R H 2002Direct electron transfer of glucose oxidase on carbon nanotubesNanotechnology13559CrossRefGoogle Scholar
  170. Azamian, B R, Davis, J J, Coleman, K S, Bagshaw, C B, Green, M L H 2002Bioelectrochemical single-walled carbon nanotubesJ Am Chem Soc12412664CrossRefGoogle Scholar
  171. Wang, J, Musameh, M 2003Carbon nanotube/teXon composite electrochemical sensors and biosensorsAnal Chem752075CrossRefGoogle Scholar
  172. Ianniello, R M, Lindsay, T J, Yacynych, A M 1982Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodesAnal Chem541098CrossRefGoogle Scholar
  173. Cai, C X, Chen, J 2004Direct electron transfer of glucose oxidase promoted by carbon nanotubesAnal Biochem33275CrossRefGoogle Scholar
  174. Liu, S Q, Ju, H X 2003Reagentless glucose biosensor based on direct electron transfer of glucose oxidase iimmobilized on colloidal gold modified carbon paste electrodeBiosens Bioelectron19177CrossRefGoogle Scholar
  175. Zhang, W J, Huang, Y X, Dai, H, Wang, X Y, Fan, C H, Li, G X 2004Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensorsAnal Biochem32985CrossRefGoogle Scholar
  176. Wu, Y H, Hu, S S 2006Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensorBioelectrochemistry7137Google Scholar
  177. Laviron, E 1979General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systemsJ Electroanal Chem10119CrossRefGoogle Scholar
  178. Hille, R 1996The mononuclear molybdenum enzymesChem Rev962757CrossRefGoogle Scholar
  179. Gray, C J 1971Enzyme-catalysed reactionsVan Nostrand Reinhold Co.LondonGoogle Scholar
  180. Rodrigues, C G, Wedd, A G 1991Electrochemistry of xahthine oxidase at glassy carbon and mercury electrodesJ Electroanal Chem312131CrossRefGoogle Scholar
  181. Olson, J S, Ballou, D P, Palmer, G, Massey, V 1974The mechanism of action of xanthine oxidaseJ Biol Chem2494363Google Scholar
  182. Cammack, R, Barber, M J, Bray, R C 1976Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidaseBiochem J157469Google Scholar
  183. Barber, M J, Siegel, L M 1982In Flavins and FlavoproteinsElsevier, North-HollandNew York796Google Scholar
  184. Arturo, G P, Graham, P T 1982The room temperature potentiometry of xanthine oxidase. pH-dependent redox behavior of the flavin, molybdenum, and iron-sulfur centersJ Biolog Chem25711617Google Scholar
  185. Rodrigues, C G, Wedd, A G, Bond, A M 1991Electrochemistry of xahthine oxidase at glassy carbon and mercury electrodesJ Electroanal Chem312131CrossRefGoogle Scholar
  186. Wang, L, Yuan, Z B 2004Direct electrochemistry of xanthine oxidase at a gold electrode modified with single-wall carbon nanotubesAnal Sci20635CrossRefGoogle Scholar
  187. Liu, X J, Peng, W L, Xiao, H, Li, G X 2005DNA facilitating electron transfer reaction of xanthine oxidaseElectrochem Commun7562CrossRefGoogle Scholar
  188. Aguey-Zinsou, K F, Bernhardt, P V, Leimkuhler, S 2003Protein film voltammetry of rhodobacter capsulatus xanthine dehydrogenaseJ Am Chem Soc12515352CrossRefGoogle Scholar
  189. Schuhmann, W 2002Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation proceduresRev Molecu Biotech82425CrossRefGoogle Scholar
  190. Bistolasa, N, Wollenbergera, U, Jungb, C, Schellera, F W 2005Cytochrome P450 biosensors – a reviewBiosen Bioelectron202408CrossRefGoogle Scholar
  191. Willner, I, Willner, B, Katz, E 2007Biomolecule-nanoparticle hybrid systems for bioelectronic applicationsBioelectrochem702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryWuhan UniversityWuhanP.R. China
  2. 2.Key Lab for Biotechnology of National Commission for Nationalities, College of Life ScienceThe South Central University for NationalitiesWuhanP.R. China

Personalised recommendations