Microchimica Acta

, Volume 158, Issue 3–4, pp 261–268

A comparative study of solvent extraction of total petroleum hydrocarbons in soil

Original Paper

Abstract.

Three non-specific methods for the extraction of total petroleum hydrocarbons (TPH) from soil into organic solvent were compared. The techniques used for sample preparation were Soxhlet extraction, closed-vessel microwave-assisted extraction, and CEN shake extraction. The total concentrations of extracted compounds in the boiling point range of C10–C40 were determined by gas chromatography with flame ionization detection. The best recovery (99%) and repeatability (±3%) from standard oil mixtures were obtained with microwave-assisted extraction. However, the different extraction methods exhibited different behaviour when spiked soil samples were extracted. The best repeatability was obtained with CEN shake extraction (±6%) but the repeatability values for Soxhlet and microwave-assisted methods were quite high (>20%). However, the larger uncertainties of the latter extraction methods does not necessarily limit the applicability of these methods to the determination of petroleum hydrocarbons in soil, as in the assessment of soil contamination the expanded uncertainty of the result is usually not limited by analytical uncertainty, but rather by the uncertainty of the primary sampling stage. However, distinctive variation found in the chromatographic profiles illustrates that discretion should be obeyed when chromatograms obtained after application of different extraction methods on petroleum contaminated samples are to be used in the fingerprinting or age dating studies. Otherwise, misleading conclusions concerning the age of spillage could be drawn.

Key words: Total petroleum hydrocarbons (TPH); GC-FID; extraction recovery; soil matrix; fingerprinting. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ocean Studies Board, Division of Earth and Life Studies, Marine Board, Transportation Research Board, National Research Council (2002) Spills of Emulsified Fuels: Risks and Response. National Academy Press, Washington D.C.Google Scholar
  2. Dean, J R 1998Extraction methods for environmental analysisJohn Wiley & SonsChichester123Google Scholar
  3. Hartonen, K, Bøwadt, S, Dybdal, H P, Nylund, K, Sporring, S, Lund, H, Oreld, F 2002Nordic laboratory intercomparison of supercritical fluid extraction for the determination of total petroleum hydrocarbon, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in soilJ Chromatogr A958239PubMedCrossRefGoogle Scholar
  4. Hartonen, K 1999Supercritical fluid extraction and pressurized hot water extraction novel environmentally friendly analytical techniquesUniversity of HelsinkiHelsinkiGoogle Scholar
  5. CEM Corporation (2000) Microwave-accelerated reaction system, Model MARS-X, for the extraction of organic pollutants from solid matrices. Environmental technology certification program, evaluation report. CEM corporation, Matthews, North CarolinaGoogle Scholar
  6. Yang, Y, Hawthorne, S B, Miller, D 1995Comparison of sorbent and solvent trapping after supercritical fluid extraction of volatile petroleum hydrocarbons from soilJ Chromatogr A699265CrossRefGoogle Scholar
  7. Letellier, M, Budzinski, H, Belloq, J, Connan, J 1999Focused microwave-assisted extraction of polycyclic aromatic hydrocarbons and alkanes from sediments and source rocksOrg Geochem301353CrossRefGoogle Scholar
  8. Flotron, V, Houessou, J, Bosio, A, Delteil, C, Bermond, A, Camel, V 2003Rapid determination of polycyclic aromatic hydrocarbons in sewage sludges using microwave-assisted solvent extraction. Comparison with other extraction methodsJ Chromatogr A99175CrossRefGoogle Scholar
  9. Prevot, A B, Gulmini, M, Zelano, V, Pramauro, E 2001Microwave-assisted extraction of polycyclic aromatic hydrocarbons from marine sediments using nonionic surfactant solutionsAnal Chem733790CrossRefGoogle Scholar
  10. Speight, J G 1999The chemistry and technology of petroleumMarcel DekkerNew YorkGoogle Scholar
  11. Grall, A, Leonard, C, Sacks, R 2000Peak capacity, peak-capacity production rate, and boiling point resolution for temperature programmed GC with very high programming ratesAnal Chem72591PubMedCrossRefGoogle Scholar
  12. Miñones Vázquez, M, Vázquez Blanco, M E, Muniategui Lorenzo, S, López Mahía, P, Fernández Fernández, E, Prada Rodríquez, D 2001Application of programmed temperature split/splitless injection to the trace analysis of aliphatic hydrocarbons by gas chromatographyJ Chromatogr A919363PubMedCrossRefGoogle Scholar
  13. Cavagnino, D, Magni, P, Zilioli, G, Trestianu, S 2003Comprehensive two-dimensional gas chromatography using large sample volume injection for the determination of polynuclear aromatic hydrocarbons in complex matricesJ Chromatogr A1019211PubMedCrossRefGoogle Scholar
  14. ISO 9377-2:2000 (2000) Water quality, determination of hydrocarbon oil index, part 2: method using solvent extraction and gas chromatography. ISO, Geneva SwitzerlandGoogle Scholar
  15. prEN 14039:2004:E (2004) Characterization of waste – determination of hydrocarbon content in the range of C10 to C40 by gas chromatography. European Committee for Standardization, BrusselsGoogle Scholar
  16. ISO/DIS 16703:2004 (2004) Soil quality – determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. ISO, Geneva SwitzerlandGoogle Scholar
  17. Daling P S, Faksness L G (2002) Laboratory and reporting instructions for the CEN/BT/TF 120 Oil spill identification – Round Robin test – May 2001. SINTEF Applied chemistry, Trondheim, NorwayGoogle Scholar
  18. American Petroleum Institute (1987) Proceedings, sampling and analytical methods for determining petroleum hydrocarbons in groundwater and soil. HESD, Dept. Rpt. #214, American Petroleum Institute, Washington D.C.Google Scholar
  19. Halling, K, Bielsen, K B, Madsen, J, Eriksen, L L H, Klausen, H S, Weibel, N, Andersen, J, Knudsen, K, Wendelbo, T 2004Vurdering af metoder til analyse af olie i jordMiljøstyrelsenDenmarkGoogle Scholar
  20. U.S. Environmental Protection Agency EPA Methods 3540C, 3541, 3545, 3550B, 3560, 4030, 8270C, 8275A, 8440, Test methods for evaluating solid waste, physical/chemical methods: EPA Publication SW-846. Electronic Resources of EPA test methods, http://www.epa.gov/epaoswer/hazwaste/test/main.htm
  21. Government of British Columbia, Ministry of Water, Land and Air Protection (2005) Extractable petroleum hydrocarbons in solids by GC/FID. British Columbia Environmental Laboratory Manual. Ministry of Environment, Government of British Columbia, CanadaGoogle Scholar
  22. American Society for Testing and Materials (1990a) Standard practice for oil spill identification by gas chromatography and positive ion electron impact low resolution mass spectrometry american society for testing and materials. W. Conshohocken, PA, USAGoogle Scholar
  23. American Society for Testing and Materials (1990b) Standard test methods for comparison of waterborne petroleum oils by gas chromatography. American society for testing and materials. W. Conshohocken, PA, USAGoogle Scholar
  24. Daling P S, Faksness L G (2001) Laboratory and reporting instructions for the CEN/BT/TF/120 Oil Spill Identification – Round Robin Test. Sintef Applied Chemistry, NorwayGoogle Scholar
  25. Malle H (2002) Interlaboratory Study of the Canadian Council for Ministers of the Environment (CCME) Method for the analysis of petroleum hydrocarbons in soil. Environment Canada, National Laboratory for Environmental Testing, National Water Research Institute, Burlington, OntarioGoogle Scholar
  26. Laitinen A (1999) Supercritical fluid extraction of organic compounds from solids and aqueous solutions. Technical Research Centre of Finland, EspooGoogle Scholar
  27. Lopez-Avila, V, Young, R 1994Microwave-assisted extraction of organic compounds from standard reference soils and sedimentsAnal Chem661097CrossRefGoogle Scholar
  28. Bøwadt S, Dybdahl H P, Bennetzen S, Merry J, Andersen K J, Vejbøl J (2000) Udvikling af analysemetode til bestemmelse af Polycykliske Aromatiske Hydrocarboner (PAH’er) i jord. DHI, Institut for Vand og Miljø, DenmarkGoogle Scholar
  29. Teknologiudviklingsprogrammet for jord- og grundvandsforurening (2004) Vurdering af metoder til analyse af olie i jord. Miljøstyrelsen, DanmarkGoogle Scholar
  30. U.S. Environmental Protection Agency (1996) EPA 3540C. Soxhlet extraction. Revision 3Google Scholar
  31. Squire, S, Ramsey, M H, Gardner, M J 2000Collaborative trial in sampling for the spatial delineation of contamination and the estimation of uncertaintyAnalyst125139CrossRefGoogle Scholar
  32. Ramsey, M H, Argyraki, A, Thompson, M 1995On the collaborative trial in samplingAnalyst1202309CrossRefGoogle Scholar
  33. Saari, E 2004Näytteenoton epävarmuus arvioitaessa maa-alueen pilaantuneisuuttaUniversity of OuluOuluGoogle Scholar
  34. Puolanne J, Pyy O, Jeltsch U (1994) Saastuneet maa-alueet ja niiden käsittely Suomessa. Saastuneiden maa-alueiden selvitys- ja kunnostusprojekti. Ympäristöministeriö, HelsinkiGoogle Scholar
  35. Christensen B, Larsen T H (1996) Method for determining the age of diesel oil spills in the soil. Ground Water Monit Rem Fall 113Google Scholar
  36. Wade, M J 2001Age-dating diesel fuel spills: using the european empirical time-based model in the USAEnvironmental Forensics2347CrossRefGoogle Scholar
  37. Wang, Z, Fingas, M W 2003Development of oil hydrocarbon fingerprinting and identification techniquesMar Pollut Bull47423PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OuluOuluFinland

Personalised recommendations