Microchimica Acta

, Volume 156, Issue 3–4, pp 183–207 | Cite as

Data analysis for electronic nose systems



Electronic noses (e-noses) employ an array of chemical gas sensors and have been widely used for the analysis of volatile organic compounds. Pattern recognition provides a higher degree of selectivity and reversibility to the systems leading to an extensive range of applications. These range from the food and medical industry to environmental monitoring and process control. Many types of data analysis techniques have been used on the data produced. This review covers aspects of analysis from data normalisation methods to pattern recognition and classification techniques. An overview of data visualisation such as non-linear mapping and multivariate statistical techniques is given. Focus is then on the use of artificial intelligence techniques such as neural networks and fuzzy logic for classification and genetic algorithms for feature (sensor) selection. Application areas are covered with examples of the types of systems and analysis methods currently in use. Future trends in the analysis of sensor array data are discussed.

Key words: Electronic noses; sensor arrays; pattern recognition; sensor selection. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Persaud, K, Dodd, G 1982Analysis of discrimination mechanisms in the mammalian olfactory system using a model noseNature299352Google Scholar
  2. Albert, K J, Lewis, N S, Schauer, C L, Sotzing, G A, Stitzel, S E, Vaid, T P, Walt, D R 2000Cross-reactive chemical sensor arraysChem Rev1002595Google Scholar
  3. James, D, Scott, S M, Ali, Z, O’Hare, W T 2005Chemical sensors for electronic nose systemsMicrochim Acta1491Google Scholar
  4. Janata, J, Josowicz, M, DeVaney, D M 1994Chemical sensorsAnal Chem66207RGoogle Scholar
  5. Strike, D J, Meijerink, M G H, Koudelka-Hep, M 1999Electronic noses – A mini-reviewFresenius J Anal Chem364499Google Scholar
  6. Snopok, B A, Kruglenko, I V 2002Multisensor systems for chemical analysis: state-of-the-art in electronic nose technology and new trends in machine olfactionThin Solid Films41821Google Scholar
  7. Janata, J, Josowicz, M, Vanysek, P, DeVaney, D M 1998Chemical sensorsAnal Chem70179RGoogle Scholar
  8. Janata, J 2001Centennial retrospective on chemical sensorsAnal Chem73150AGoogle Scholar
  9. Nagle, H T, Gutierrez-Osuna, R, Schiffman, S S 1998The how and why of electronic nosesIEEE Spectr3522Google Scholar
  10. Gardner, J W, Bartlett, P N 1999Electronic noses: principles and applicationsOxford University PressOxfordGoogle Scholar
  11. Pearce, T C, Schiffman, S S, Nagle, H T, Gardner, J W 2003Handbook of machine olfaction-electronic nose technologyWiley-VCHWeinheim1265Google Scholar
  12. Peres, C, Begnaud, F, Eveleigh, L, Berdague, J-L 2003Fast characterization of foodstuff by headspace mass spectrometry (HS-MS)TrAC Trends Anal Chem22858Google Scholar
  13. Marti, M P, Busto, O, Guasch, J, Boque, R 2005Electronic noses in the quality control of alcoholic beveragesTrac-Trends Anal Chem2457Google Scholar
  14. Mielle, P 1996‘Electronic noses’: Towards the objective instrumental characterization of food aromaTrends Food Sci Technol7432Google Scholar
  15. Bartlett, P N, Elliot, J M, Gardner, J W 1997Electronic noses and their application in the food industryFood Technol-Chicago5144Google Scholar
  16. Schaller, E, Bosset, J O, Escher, F 1998‘Electronic noses’ and their application to food*1Lebensmittel-Wissenschaft und-Technologie31305Google Scholar
  17. Garcia-Gonzalez, D L, Aparicio, R 2002Sensors: From biosensors to the electronic noseGrasas Y Aceites5396Google Scholar
  18. Ampuero, S, Bosset, J O 2003The electronic nose applied to dairy products: a reviewSens Actuators B941Google Scholar
  19. Deisingh, A K, Stone, D C, Thompson, M 2004Applications of electronic noses and tongues in food analysisInt J Food Sci Technol39587Google Scholar
  20. Gardner, J W, Shin, H W, Hines, E L 2000An electronic nose system to diagnose illnessSens Actuators B7019Google Scholar
  21. Thaler, E R, Kennedy, D W, Hanson, C W 2001Medical applications of electronic nose technology: review of current statusAm J Rhinol15291Google Scholar
  22. Gostelow, P, Parsons, S A, Stuetz, R M 2001Odour measurements for sewage treatment worksWat Res35579Google Scholar
  23. Nimmermark, S 2001Use of electronic noses for detection of odour from animal production facilities: a reviewWat Sci Tech4433Google Scholar
  24. Bourgeois, W, Burgess, J E, Stuetz, R M 2001On-line monitoring of wastewater quality: a reviewJ Chem Technol Biotechnol76337Google Scholar
  25. Bourgeois, W, Romain, A C, Nicolas, J, Stuetz, R M 2003The use of sensor arrays for environmental monitoring: interests and limitationsJ Environ Monitor5852Google Scholar
  26. Kuske, M, Romain, A-C, Nicolas, J 2005Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments?Build Environ40824Google Scholar
  27. Liden, H, Mandenius, C-F, Gorton, L, Meinander, N Q, Lundstrom, I, Winquist, F 1998On-line monitoring of a cultivation using an electronic noseAnal Chim Acta361223Google Scholar
  28. Bachinger, T, Riese, U, Eriksson, R, Mandenius, C F 2000Monitoring cellular state transitions in a production-scale CHO-cell process using an electronic noseJ Biotechnol7661Google Scholar
  29. Liden, H, Bachinger, T, Gorton, L, Mandenius, C F 2000Online determination of non-volatile or low-concentration metabolites in a yeast cultivation using an electronic noseAnalyst1251123Google Scholar
  30. Deisingh, A K, Thompson, M 2004Biosensors for the detection of bacteriaCan J Microbiol5069Google Scholar
  31. Jurs, P C, Bakken, G A, McClelland, H E 2000Computational methods for the analysis of chemical sensor array data from volatile analytesChem Rev1002649Google Scholar
  32. Bellman, R 1961Adaptive control processes: a guided tourPrinceton University PressPrinceton, N.J.Google Scholar
  33. Jain, A K, Duin, R P W, Mao, J C 2000Statistical pattern recognition: a reviewIEEE T Pattern Anal Machine Intelligence224Google Scholar
  34. Haykin, S 1999Neural networks, a comprehensive foundation2Prentice HallUpper Saddle River, N.J.842Google Scholar
  35. Blum, A L, Langley, P 1997Selection of relevant features and examples in machine learningArtificial Intelligence97245Google Scholar
  36. Hyvärinen, A, Karhunen, J, Oja, E 2001Independent component analysisJohn Wiley & SonsNew York504Google Scholar
  37. Stone, J V 2002Independent component analysis: an introductionTrends Cogn Sci659Google Scholar
  38. Kohavi, R, John, G H 1997Wrappers for feature subset selectionArtif Intell97273Google Scholar
  39. Mertens, B, Thompson, M, Fearn, T 1994Principal component outlier detection and simca – a synthesisAnalyst1192777Google Scholar
  40. Walmsley, A D, Haswell, S J, Metcalfe, E 1991Methodology for the selection of suitable sensors for incorporation into a gas sensor arrayAnal Chim Acta24231Google Scholar
  41. McAlernon, P, Slater, J M, Lowthian, P, Appleton, M 1996Interpreting signals from an array of non-specific piezoelectric chemical sensorsAnalyst121743Google Scholar
  42. Park, J, Zellers, E T 2000Temperature and humidity compensation in the determination of solvent vapours with a microsensor systemAnalyst1251775Google Scholar
  43. Groves, W A, Zellers, E T, Frye, G C 1998Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: selection and characterization of the preconcentrator adsorbentAnal Chim Acta371131Google Scholar
  44. Groves, W A, Zellers, E T 2001Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor arrayThe Annals of Occupational Hygiene45609Google Scholar
  45. Johnson, R A, Wichern, D W 1982Applied multivariate statistical analysisPrentice-Hall InternationalEnglewood Cliffs, New JerseyGoogle Scholar
  46. Brezmes, J, Ferreras, B, Llobet, E, Vilanova, X, Correig, X 1997Neural network based electronic nose for the classification of aromatic speciesAnal Chim Acta348503Google Scholar
  47. Jonsdottir, R, Olafsdottir, G, Martinsdottir, E, Stefansson, G 2004Flavor characterization of ripened cod roe by gas chromatography, sensory analysis, and electronic noseJ Agric Food Chem526250Google Scholar
  48. Gan, H L, Tan, C P, Che Man, Y B, NorAini, I, Nazimah, S A H 2005Monitoring the storage stability of RBD palm olein using the electronic noseFood Chem89271Google Scholar
  49. Gan, H L, Man, Y B C, Tan, C P, NorAini, I, Nazimah, S A H 2005Characterisation of vegetable oils by surface acoustic wave sensing electronic noseFood Chem89507Google Scholar
  50. Everitt, B 1974Cluster analysisHeinemann EducationalLondonGoogle Scholar
  51. Sammon, J W 1969A nonlinear mapping for data structure analysisIEEE T Computc-18401Google Scholar
  52. Lerner, B, Guterman, H, Aladjem, M, Dinsteint, I, Romem, Y 1998On pattern classification with Sammon’s nonlinear mapping an experimental studyPattern Recogn31371Google Scholar
  53. Pal, N R 1999Soft computing for feature analysisFuzzy Sets Syst103201Google Scholar
  54. Kowalski, B R, Bender, C F 1972Pattern recognition. Powerful approach to interpreting chemical dataJ Am Chem Soc945632Google Scholar
  55. Kowalski, B R, Bender, C F 1973Pattern recognition. II. Linear and nonlinear methods for displaying chemical dataJ Am Chem Soc95686Google Scholar
  56. Persaud, K C, Khaffaf, S M, Payne, J S, Pisanelli, A M, Lee, D H, Byun, H G 1996Sensor array techniques for mimicking the mammalian olfactory systemSens Actuators B36267Google Scholar
  57. Byun, H G, Persaud, K C, Khaffaf, S M, Hobbs, P J, Misselbrook, T H 1997Application of unsupervised clustering methods to the assessment of malodour in agriculture using an array of conducting polymer odour sensorsComput Electron Agr17233Google Scholar
  58. Persaud, K C, Pisanelli, A M, Szyszko, S, Reichl, M, Horner, G, Rakow, W, Keding, H J, Wessels, H 1999A smart gas sensor for monitoring environmental changes in closed systems: results from the MIR space stationSens Actuators B55118Google Scholar
  59. Bourgeois, W, Hogben, P, Pike, A, Stuetz, R M 2003Development of a sensor array based measurement system for continuous monitoring of water and wastewaterSens Actuators B88312Google Scholar
  60. Biswas, S, Heindselmen, K, Wohltjen, H, Staff, C 2004Differentiation of vegetable oils and determination of sunflower oil oxidation using a surface acoustic wave sensing deviceFood Control1519Google Scholar
  61. Nonaka, A, Tanaka, M, Anguri, H, Nagata, H, Kita, J, Shizukuishi, S 2005Clinical assessment of oral malodor intensity expressed as absolute value using an electronic noseOral Diseases1135Google Scholar
  62. Gardner, J W, Shin, H W, Hines, E L, Dow, C S 2000An electronic nose system for monitoring the quality of potable waterSens Actuators B69336Google Scholar
  63. Shykhon, M E, Morgan, D W, Dutta, R, Hines, E L, Gardner, J W 2004Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: a preliminary studyJ Laryngol Otol118706Google Scholar
  64. Barko, G, Hlavay, J 1998Application of principal component analysis for the characterisation of a piezoelectric sensors arrayAnal Chim Acta367135Google Scholar
  65. Guadarrama, A, Fernandez, J A, Iniguez, M, Souto, J, de Saja, J A 2000Array of conducting polymer sensors for the characterisation of winesAnal Chim Acta411193Google Scholar
  66. Guadarrama, A, Fernandez, J A, Iniguez, M, Souto, J, de Saja, J A 2001Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro-extraction (SPME) techniqueSens Actuators B77401Google Scholar
  67. Jain, A K, Murty, M N, Flynn, P J 1999Data clustering: a reviewACM Computing Sur31264Google Scholar
  68. Anderberg, M R 1973Cluster analysis for applicationsAcademic Press, IncNew YorkGoogle Scholar
  69. Grate, J W, Nelson, D A, Skaggs, R 2003Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensingAnal Chem751868Google Scholar
  70. Duda, R O, Hart, P E, Stork, D G 2001Pattern classificationWiley-InterscienceNew YorkGoogle Scholar
  71. Shaffer, R E, Rose-Pehrsson, S L, McGill, R A 1999A comparison study of chemical sensor array pattern recognition algorithmsAnal Chim Acta384305Google Scholar
  72. Fisher, R A 1936The use of multiple measurements in taxonomic problemsAnn Eugen7179Google Scholar
  73. Fisher, R A 1938The statistical utilization of multiple measurementsAnn Eugen8376Google Scholar
  74. Anderson, E 1935The Irises of the Gaspe PeninsulaBull Amer Iris Soc592Google Scholar
  75. Martin, Y G, Oliveros, M C C, Pavon, J L P, Pinto, C G, Cordero, B M 2001Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oilsAnal Chim Acta44969Google Scholar
  76. Di Natale, C, Macagnano, A, Martinelli, E, Paolesse, R, D’Arcangelo, G, Roscioni, C, Finazzi-Agro, A, D’Amico, A 2003Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensorsBiosens Bioelectron181209Google Scholar
  77. Oliveros, M C C, Pavon, J L P, Pinto, C G, Laespada, M E F, Cordero, B M, Forina, M 2002Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oilsAnal Chim Acta459219Google Scholar
  78. Goschnick, J, Koronczi, I, Frietsch, M, Kiselev, I 2005Water pollution recognition with the electronic nose KAMINASens Actuators B106182Google Scholar
  79. Gonzalez-Martin, I, Perez-Pavon, J L, Gonzalez-Perez, C, Hernandez-Mendez, J, Alvarez-Garcia, N 2000Differentiation of products derived from Iberian breed swine by electronic olfactometry (electronic nose)Anal Chim Acta424279Google Scholar
  80. Lavine, B K 2002

    Clustering and classification of analytical data

    Meyers, R A eds. Encyclopedia of analytical chemistryJohn Wiley & Sons LtdChichester1
    Google Scholar
  81. Schiffman S S, Wyrick D W, Gutierrez-Osuna R, Nagle H T (2000) Effectiveness of an electronic nose for monitoring bacterial and fungal growth. Olfaction and electronic noses, p 173Google Scholar
  82. Carmel, L, Levy, S, Lancet, D, Harel, D 2003A feature extraction method for chemical sensors in electronic nosesSens Actuators B9367Google Scholar
  83. Bishop, C M 1995Neural networks for pattern recognitionOxford University PressOxfordGoogle Scholar
  84. Jondarr G (1996) Backpropagation family album, Technical Report C/TR95-05Google Scholar
  85. Pardo, M, Sberveglieri, G 2004Remarks on the use of multilayer perceptrons for the analysis of chemical sensor array dataIEEE Sensors J4355Google Scholar
  86. Garcia-Gonzalez, D L, Aparicio, R 2003Virgin olive oil quality classification combining neural network and MOS sensorsJ Agric Food Chem513515Google Scholar
  87. Pardo, M, Sberveglieri, G, Gardini, S, Dalcanale, E 2000A hierarchical classification scheme for an electronic noseSens Actuators B69359Google Scholar
  88. Zou, X B, Zhao, J W, Wu, S Y, Huang, X Y 2003Vinegar classification based on feature extraction and selection from tin oxide gas sensor array dataSensors3101CrossRefGoogle Scholar
  89. Lowe, D 1991What have neural networks to offer statistical pattern processing?Proceedings of SPIE Conference on Adaptive Signal Processing1565460Google Scholar
  90. Pedrycz, W 1998Conditional fuzzy clustering in the design of radial basis function neural networksIEEE Trans Neural Networks9601Google Scholar
  91. Byun H G, Persaud K C, Kim J D, Lee D D (1999) Improvement of RBF network’s performance for application to odour sensing systems. Olfaction and electronic nose; The 6th international symposium Olfaction and electronic nose 99 and the 1st workshop of the Network of Excellence on Artificial Olfactory Sensing Nose, p 237Google Scholar
  92. Weymaere, N, Martens, J-P 1991A fast and robust learning algorithm for feedforward neural networksNeural Networks4361Google Scholar
  93. Billings, S A, Zheng, G L 1995Radial basis function network configuration using genetic algorithmsNeural Networks8877Google Scholar
  94. Carse B, Fogarty T C (1996) Tackling the “curse of dimensionality” of radial basis function neural networks using a genetic algorithm. Lect Notes Comput Sci, p 710Google Scholar
  95. Looney, C G 1997Pattern recognition using neural networksOxford University PressOxfordGoogle Scholar
  96. Distante, C, Ancona, N, Siciliano, P 2003Support vector machines for olfactory signals recognitionSens Actuators B8830Google Scholar
  97. Szczurek, A, Maciejewska, M 2004Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifierTalanta64609Google Scholar
  98. Ali, Z, James, D, O’Hare, W T, Rowell, F J, Scott, S M 2003Radial basis neural network for the classification of fresh edible oils using an electronic noseJ Therm Anal Calorim71147Google Scholar
  99. James, D, Scott, S M, O’Hare, W T, Ali, Z, Rowell, F J 2004Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognitionT I Meas Control263Google Scholar
  100. Specht, D F 1990Probalistic neural networksNeural Networks3109Google Scholar
  101. McGill, R A, Nguyen, V K, Chung, R, Shaffer, R E, DiLella, D, Stepnowski, J L, Mlsna, T E, Venezky, D L, Dominguez, D 2000The “NRL-SAWRHINO”: a nose for toxic gasesSens Actuators B6510Google Scholar
  102. Lozano J, Santos J P, Horrillo M C (2006) Classification of white wine aromas with an electronic nose. Talanta (in press)Google Scholar
  103. Santos J P, Fernandez M J, Fontecha J L, Lozano J, Aleixandre M, Garcia M, Gutierrez J, Horrillo M C (2006) SAW sensor array for wine discrimination. Sens Actuators B (in press)Google Scholar
  104. Kohonen, T 1995Self-organizing mapsSpringerHeidelbergGoogle Scholar
  105. Davide, F A M, Di Natale, C, D’Amico, A 1994Self-organizing multisensor systems for odour classification: internal categorization, adaptation and drift rejectionSens Actuators B18244Google Scholar
  106. Davide, F A M, Di Natale, C, Damico, A 1995Self-organizing sensory maps in odor classification mimickingBiosens Bioelectron10203Google Scholar
  107. Sinesio, F, Di Natale, C, Quaglia, G B, Bucarelli, F M, Moneta, E, Macagnano, A, Paolesse, R, D’Amico, A 2000Use of electronic nose and trained sensory panel in the evaluation of tomato qualityJ Sci Food Agr8063Google Scholar
  108. Kohonen, T 1989Self-organization and associative memory3SpringerNew YorkGoogle Scholar
  109. Kusumoputro, B, Budiarto, H, Jatmiko, W 2002Fuzzy-neuro LVQ and its comparison with fuzzy algorithm LVQ in artificial odor discrimination systemISA Trans41395Google Scholar
  110. Seyama, M, Nakamura, M, Tate, A 2004Odor-sensor technology based on an array of quartz crystal resonators coated with plasma-deposited organic filmNTT Technical Review270Google Scholar
  111. Qian T, Xu R, Kwan C, Linnell B, Young R (2004) Toxic vapor classification and concentration estimation for space shuttle and international space station. Advances in neural networks – Isnn 2004, Pt 1. Springer, Berlin, p 543Google Scholar
  112. Zadeh, L A 1965Fuzzy setsInformation and Control8338Google Scholar
  113. Zadeh, L A 1968Fuzzy algorithmsInformation and Control1294Google Scholar
  114. Bezdek, J C 1981Pattern recognition with fuzzy objective function algorithmsPlenumNew YorkGoogle Scholar
  115. Dutta, R, Hines, E, Gardner, J, Boilot, P 2002Bacteria classification using cyranose 320 electronic noseBioMedical Engineering On Line11Google Scholar
  116. Dutta R, Morgan D, Baker N, Gardner J W, Hines E L (2006) Identification of Staphylococcus aureus infections in hospital environment: electronic nose based approach. Sens Actuators B in press, corrected proofGoogle Scholar
  117. Dutta, R, Kashwan, K R, Bhuyan, M, Hines, E L, Gardner, J W 2003Electronic nose based tea quality standardizationNeural Networks16847Google Scholar
  118. Marcelloni, F 2001Recognition of olfactory signals based on supervised fuzzy C-means and k-NN algorithmsPattern Recognit Lett221007Google Scholar
  119. Dumitrescu, D, Lazzerini, B, Marcelloni, F 2000A fuzzy hierarchical classification system for olfactory signalsPattern Anal Appl3325Google Scholar
  120. Lazzerini, B, Maggiore, A, Marcelloni, F 2001FROS: a fuzzy logic-based recogniser of olfactory signalsPattern Recogn342215Google Scholar
  121. Singh, S, Hines, E L, Gardner, J W 1996Fuzzy neural computing of coffee and tainted-water data from an electronic noseSens Actuators B30185Google Scholar
  122. Scott, S M, Ali, Z, O’Hare, W T 2003

    Fuzzy logic and fuzzy classification techniques

    Cartwright, H MSztandera, L M eds. Soft computing approaches in chemistrySpringerHeidelberg95
    Google Scholar
  123. Grossberg, S 1976Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectorsBiological Cybernetics23121Google Scholar
  124. Carpenter, G A, Grossberg, S, Reynolds, J H 1995A fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problemsIEEE Trans Neural Networks61330Google Scholar
  125. Carpenter, G A, Grossberg, S, Rosen, D B 1991Fuzzy art – fast stable learning and categorization of analog patterns by an adaptive resonance systemNeural Networks4759Google Scholar
  126. Kasuba, T 1993Simplified fuzzy ARTMAPAI Expert818Google Scholar
  127. Vakil-Baghmisheh, M T, Pavesic, N 2003A fast simplified fuzzy ARTMAP networkNeural Processing Lett17273Google Scholar
  128. Llobet, E, Hines, E L, Gardner, J W, Bartlett, P N, Mottram, T T 1999Fuzzy ARTMAP based electronic nose data analysisSens Actuators B61183Google Scholar
  129. Vinaixa, M, Marin, S, Brezmes, J, Llobet, E, Vilanova, X, Correig, X, Ramos, A, Sanchis, V 2004Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometryJ Agric Food Chem526068Google Scholar
  130. Vinaixa, M, Llobet, E, Brezmes, J, Vilanova, X, Correig, X 2005A fuzzy ARTMAP- and PLS-based MS e-nose for the qualitative and quantitative assessment of rancidity in crispsSens Actuators B106677Google Scholar
  131. Ali Z, Scott S M, James D, O’Hare W T, Rowell F J, Sarkodie-Guyan T, Theaker B J (2000) Classification of fresh edible oils with piezoelectric quartz crystal based electronic nose. In: Gardner J W, Persaud K C (eds) Electronic noses and olfaction. Institute of Physics Publishing, p 229Google Scholar
  132. Fritzke, B 1994Growing cell structures – a self-organizing network for unsupervised and supervised learningNeural Networks71441Google Scholar
  133. Fritzke, B 1995A growing neural gas network learns topologiesAdv Neural Information Processing Syst7625Google Scholar
  134. Marsland, S, Shapiro, J, Nehmzow, U 2002A self-organising network that grows when requiredNeural Networks151041Google Scholar
  135. Cheng, G J, Zell, A 2001Externally growing cell structures for data evaluation of chemical gas sensorsNeural Comput Appl1089Google Scholar
  136. Llobet, E, Hines, E L, Gardner, J W, Franco, S 1999Non-destructive banana ripeness determination using a neural network-based electronic noseMeas Sci Technol10538Google Scholar
  137. Vaid, T P, Burl, M C, Lewis, N S 2001Comparison of the performance of different discriminant algorithms in analyte discrimination tasks using an array of carbon black – polymer composite vapor detectorsAnal Chem73321Google Scholar
  138. Bicego, M, Tessari, G, Tecchiolli, G, Bettinelli, M 2002A comparative analysis of basic pattern recognition techniques for the development of small size electronic noseSens Actuators B85137Google Scholar
  139. Dutta, R, Hines, E L, Gardner, J W, Udrea, D D, Boilot, P 2003Non-destructive egg freshness determination: an electronic nose based approachMeas Sci Technol14190Google Scholar
  140. Kuske, M, Rubio, R, Romain, A C, Nicolas, J, Marco, S 2005Fuzzy k-NN applied to moulds detectionSens Actuators B10652Google Scholar
  141. Saunders, B W, Thiel, D V, Mackay-Sim, A 1995Response kinetics of chemically-modified quartz piezoelectric crystals during odorant stimulationAnalyst1201013Google Scholar
  142. Freeman, N J, May, I P, Weir, D J 1994Response kinetics of polymer-coated bulk acoustic wave devices on exposure to gases and vapoursJ Chem Soc Faraday Transactions90751Google Scholar
  143. Ratton, L, Kunt, T, McAvoy, T, Fuja, T, Cavicchi, R, Semancik, S 1997A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose)Sens Actuators B41105Google Scholar
  144. Distante, C, Leo, M, Siciliano, P, Persaud, K C 2002On the study of feature extraction methods for an electronic noseSens Actuators B87274Google Scholar
  145. Llobet, E, Brezmes, J, Ionescu, R, Vilanova, X, Al-Khalifa, S, Gardner, J W, Barsan, N, Correig, X 2002Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensorSens Actuators B83238Google Scholar
  146. Leone, A, Distante, C, Ancona, N, Persaud, K C, Stella, E, Siciliano, P 2005A powerful method for feature extraction and compression of electronic nose responsesSens Actuators B105378Google Scholar
  147. Skov, T, Bro, R 2005A new approach for modelling sensor based dataSens Actuators B106719Google Scholar
  148. Grate, J W 2000Acoustic wave microsensor arrays for vapor sensingChem Rev1002627Google Scholar
  149. Wilson, D M, Dunman, K, Roppel, T, Kalim, R 2000Rank extraction in tin-oxide sensor arraysSens Actuators B62199Google Scholar
  150. Carey, W P, Beebe, K R, Kowalski, B R, Illman, D L, Hirschfeld, T 1986Selection of adsorbates for chemical sensor arrays by pattern-recognitionAnal Chem58149Google Scholar
  151. Lau, K-T, Micklefield, J, Slater, J M 1998The optimisation of sorption sensor arrays for use in ambient conditionsSens Actuators B5069Google Scholar
  152. Kermani, B G, Schiffman, S S, Nagle, H T 1998A novel method for reducing the dimensionality in a sensor arrayIEEE Trans Instrum Meas47728Google Scholar
  153. Park, J, Groves, W A, Zellers, E T 1999Vapor recognition with small arrays of polymer coated microsensors. A comprehensive analysisAnal Chem713877Google Scholar
  154. Benedetti, S, Mannino, S, Sabatini, A G, Marcazzan, G L 2004Electronic nose and neural network use for the classification of honeyApidologie35397Google Scholar
  155. Pardo, M, Kwong, L G, Sberveglieri, G, Brubaker, K, Schneider, J F, Penrose, W R, Stetter, J R 2005Data analysis for a hybrid sensor arraySens Actuators B106136Google Scholar
  156. Eklov, T, Martensson, P, Lundstrom, I 1999Selection of variables for interpreting multivariate gas sensor dataAnal Chim Acta381221Google Scholar
  157. Polikar, R, Shinar, R, Udpa, L, Porter, M D 2001Artificial intelligence methods for selection of an optimized sensor array for identification of volatile organic compounds*1Sens Actuators B80243Google Scholar
  158. Mitchell, M 1996An introduction to genetic algorithmsMIT PressCambridge M.A.Google Scholar
  159. Schiffman, S S, Kermani, B G, Nagle, H T 1997Analysis of medication off-odors using an electronic noseChem Senses22119Google Scholar
  160. Kermani, B G, Schiffman, S S, Nagle, H T 1999Using neural networks and genetic algorithms to enhance performance in an electronic noseIEEE Trans Biomed Eng46429Google Scholar
  161. Pavlou, A K, Magan, N, Sharp, D, Brown, J, Barr, H, Turner, A P F 2000An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitroBiosens Bioelectron15333Google Scholar
  162. Corcoran, P, Lowery, P, Anglesea, J 1998Optimal configuration of a thermally cycled gas sensor array with neural network pattern recognitionSens Actuators B48448Google Scholar
  163. Corcoran, P, Anglesea, J, Elshaw, M 1999The application of genetic algorithms to sensor parameter selection for multisensor array configurationSens Actuators A7657Google Scholar
  164. Boilot, P, Hines, E L, Gongora, M A, Folland, R S 2003Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutionsSens Actuators B8880Google Scholar
  165. Aleixandre, M, Sayago, I, Horrillo, M C, Fernandez, M J, Ares, L, Garcia, M, Santos, J P, Gutierrez, J 2004Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gasSens Actuators B103122Google Scholar
  166. Llobet, E, Brezmes, J, Gualdron, O, Vilanova, X, Correig, X 2004Building parsimonious fuzzy ARTMAP models by variable selection with a cascaded genetic algorithm: application to multisensor systems for gas analysisSens Actuators B99267Google Scholar
  167. Gardner, J W, Boilot, P, Hines, E L 2005Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approachSens Actuators B106114Google Scholar
  168. Kermani, B G, Schiffman, S S, Nagle, H T 2005Performance of the Levenberg-Marquardt neural network training method in electronic nose applicationsSens Actuators B11013Google Scholar
  169. Davide, F A M, Di Natale, C, D’Amico, A, Hierlemann, A, Mitrovics, J, Schweizer, M, Weimar, U, Gopel, W, Marco, S, Pardo, A 1995Dynamic calibration of QMB polymer-coated sensors by Wiener kernel estimationSens Actuators B26275Google Scholar
  170. Fryder M, Holmberg M, Winquist F, Lundstrom I (1995) A calibration technique for an electronic nose. Conference Solid-State Sens Actuator 683Google Scholar
  171. Sisk, B C, Lewis, N S 2005Comparison of analytical methods and calibration methods for correction of detector response drift in arrays of carbon black-polymer composite vapor detectorsSens Actuators B104249Google Scholar
  172. Holmberg, M, Winquist, F, Lundstrom, I, Davide, F, DiNatale, C, D’Amico, A 1996Drift counteraction for an electronic noseSens Actuators B36528Google Scholar
  173. Holmberg, M, Davide, F A M, Di Natale, C, D’Amico, A, Winquist, F, Lundstrom, I 1997Drift counteraction in odour recognition applications: Lifelong calibration methodSens Actuators B42185Google Scholar
  174. Gardner, J W, Hines, E L, Pang, C 1996Detection of vapours and odours from a multisensor array using pattern recognition: self-organising adaptive resonance techniquesMeas Control-UK29172Google Scholar
  175. NOSE II (2005) Network on artificial Olfactory Sensing, http://www.nose-network.org/

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Science and Technology, Applied Science DepartmentUniversity of TeessideMiddlesbroughUnited Kingdom

Personalised recommendations