Microchimica Acta

, Volume 156, Issue 1–2, pp 69–72 | Cite as

Quantitative nitrogen analysis by Auger electron spectrometry and glow discharge optical emission spectrometry

  • Stefan BaunackEmail author
  • Volker Hoffmann
  • Wieland Zahn
Original Paper


Nitrides of refractory metals are investigated as diffusion barriers for Cu metallization. The composition, thermal stability and inter diffusion in layered systems are characterized by depth profile analysis. For the quantification of depth profiles determination of sensitivity factors is essential. For nitrogen and other light elements matrix specific standards are often not available and compound standards are used for calibration. We have investigated the systems Ta–N and Ta–Si–N and for comparison Cr–N by means of Auger electron spectrometry (AES) and glow discharge optical emission spectrometry (GDOES). A non-linear calibration curve for the N/Cr intensity ratio was observed with GDOES in the Cr–N-system, probably caused by self-absorption of the Cr line.

Key words: AES; GDOES; nitride; diffusion barrier; depth profiling; quantification. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ettmayer, P, Lengauer, W 2002NitridesUllmann’s encyclopedia of industrial chemistryWiley-VCH Verlag GmbH & CoNew York51 ffGoogle Scholar
  2. Stavrev, M, Fischer, D, Wenzel, C, Drescher, K, Mattern, N 1997Thin Solid Films30779CrossRefGoogle Scholar
  3. Dittmar K, Engelmann H-J, Peikert M, Wieser E, von Borany J (2005) Appl Surf Sci (in press)Google Scholar
  4. Chen, J S, Lu, K Y 2001Thin Solid Films396204Google Scholar
  5. Cabral, C,Jr, Saenger, K L, Kotecki, D E, Harper, J M E 2000J Mater Res15194Google Scholar
  6. Baunack, S, Menzel, S, Pekarčíková, M, Schmidt, H, Albert, M, Wetzig, K 2003Anal Bioanal Chem375891Google Scholar
  7. Huebner, R, Hecker, M, Mattern, N, Voss, A, Acker, J, Hoffmann, V, Wetzig, K, Engelmann, H-J, Zschech, E, Heuer, H, Wenzel, C 2004Thin Solid Films468183CrossRefGoogle Scholar
  8. Alay, J L, Bender, H, Brijs, G, Demesmaeker, A, Vandervorst, W 1991Surf Interface Anal17373CrossRefGoogle Scholar
  9. Hecker, M, Huebner, R, Ecke, R, Schulz, S, Engelmann, H-J, Stegmann, H, Hoffmann, V, Mattern, N, Gessner, T, Zschech, E 2002Microelectron Eng64269CrossRefGoogle Scholar
  10. Ohashi, Y, Yamamoto, Y, Tsunoyama, K, Kishadaka, H 1979Surf Interface Anal153CrossRefGoogle Scholar
  11. Berneron, R, Charbonnier, JC 1981Surf Interface Anal313CrossRefGoogle Scholar
  12. Hoffmann, V, Dorka, R, Wilken, L, Hodoroaba, V D, Wetzig, K 2003Surf Interface Anal35575CrossRefGoogle Scholar
  13. Hoffmann, V, Uhlemann, H-J, Präßler, F, Wetzig, K, Birus, D 1996Fresenius J Anal Chem355826Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.IFW Dresden, Leibniz-Institut für Festkörper- und Werkstoffforschung DresdenDresdenGermany
  2. 2.Westsächsische Hochschule Zwickau, Fachbereich Physikalische Technik/InformatikZwickauGermany

Personalised recommendations