Microchimica Acta

, Volume 154, Issue 1–2, pp 115–121

Simultaneous Determination of Dopamine and Ascorbic Acid at a Triazole Self-Assembled Monolayer-Modified Gold Electrode

Original Paper

Abstract.

A 3-amino-5-mercapto-1,2,4-triazole (TA) self-assembled monolayer-modified gold electrode (TA SAM/Au) is characterized by X-ray photoelectron spectroscopy, A.C. impedance, cyclic voltammetry, chronoamperometry and chronocoulometry. The TA SAM/Au exhibited good promotion of the electrochemical oxidation of dopamine. Some electrochemical parameters of dopamine such as electron transfer number, exchange current density, standard heterogeneous rate constant, diffusion coefficient, etc., were measured by different electrochemical methods. The peak currents of dopamine were linearly dependent on its concentration in the range of 1.5 × 10−6–1.0 × 10−4 mol L−1, with a detection limit of 5.0 × 10−7 mol L−1. The oxidative peak potentials of dopamine and ascorbic acid were well separated at about 190 ± 10 mV in pH 2.0 BR buffers at TA SAM/Au, the oxidation peak current increases approximately linearly with increasing concentration of both dopamine and ascorbic acid in the concentration range of 9.98 × 10−6–4.54 × 10−4 mol L−1. It can be used for simultaneous determination of dopamine and ascorbic acid.

Key words: Triazole; SAM; dopamine; ascorbic acid; simultaneous determination. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciszewski, A, Milczarek, G 1999Anal Chem711055CrossRefGoogle Scholar
  2. Rubianes, M D, Rivas, G A 2001Anal Chim Acta44099CrossRefGoogle Scholar
  3. Wen, X L, Jia, Y H, Liu, Z L 1999Talanta501027CrossRefGoogle Scholar
  4. Chen, S M, Peng, K T 2003J Electroanal Chem547179CrossRefGoogle Scholar
  5. Raj, C R, Ohsaka, T 2001J Electroanal Chem49644CrossRefGoogle Scholar
  6. Xue, K H, Tao, F F, Yin, S Y, Shen, W, Xu, W 2004Chem Phys Lett391243CrossRefGoogle Scholar
  7. Zhao, H, Zhang, Y, Yuan, Z 2001Anal Chim Acta441117CrossRefGoogle Scholar
  8. Jin, G P, Lin, X Q, Gong, J M 2004J Electroanal Chem569135CrossRefGoogle Scholar
  9. Li, Q W, Wang, Y M, Luo, G A 2000Mater Sci Engineering C1171Google Scholar
  10. Wang, Z H, Liang, Q L, Wang, Y M, Luo, G A 2003J Electroanal Chem540129Google Scholar
  11. Arnold, S, Feng, Z Q, Kakiuchi, T, Knoll, W, Niki, K 1997J Electroanal Chem43891CrossRefGoogle Scholar
  12. Pan, W, Durning, C J, Turro, N J 1996Langmuir124469Google Scholar
  13. Liu, T, Li, M X, Li, Q Y 2004Talanta631053Google Scholar
  14. Wang, S F, Du, D, Zou, Q C 2002Talanta57687Google Scholar
  15. Wang, S F, Du, D 2003Sens Actuators B94282Google Scholar
  16. Zhang, X H, Wang, S F 2002Anal Lett35995Google Scholar
  17. Zhang, X H, Wang, S F 2005Sens Actuators B329Google Scholar
  18. Castner, D G, Hinds, K, Grainger, D W 1996Langmuir125083CrossRefGoogle Scholar
  19. Laibinis, P E, Whitesides, G M,  et al. 1991J Am Chem Soc1137152CrossRefGoogle Scholar
  20. Kharitonov, A B, Alfonta, L, Kata, E, Willner, I 2000J Electroanal Chem487133CrossRefGoogle Scholar
  21. Bard A J, Faulkner W R (eds) (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  22. Sabatani, E, Rubinstein, I, Maoz, R, Sagiv, J 1987J Electroanal Chem219365CrossRefGoogle Scholar
  23. Durform, C N, Yenser, B A, Bowers, M L 1988J Electroanal Chem244287Google Scholar
  24. Malem, F, Mandler, D 1993Anal Chem6537CrossRefGoogle Scholar
  25. Wen, X L, Jia, Y H, Liu, Z L 1999Talanta501027CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2006

Authors and Affiliations

  1. 1.Faculty of Chemistry and Material Science, Hubei UniversityWuhanChina
  2. 2.School of Engineering, Zhejiang Forestry UniversityHangzhouChina

Personalised recommendations