Advertisement

Digital Rock Approach to Model the Permeability in an Artificially Heated and Fractured Granodiorite from the Liquiñe Geothermal System (39°S)

  • Eduardo MolinaEmail author
  • Gloria Arancibia
  • Josefa Sepúlveda
  • Tomás Roquer
  • Domingo Mery
  • Diego Morata
Original Paper

Abstract

The Southern Volcanic Zone of the Andes has a high potential in terms of geothermal resources and is an exceptional and poorly explored natural laboratory to study the interplay between tectonic stresses, thermal damage, low-permeable crystalline rocks, and fluid flow. Permeability is mostly related to the damage zones associated with the faults controlling regional tectonics, namely, the Liquiñe–Ofqui Fault System and Andean Transverse Faults. This research presents a laboratory approach comprising a characterization of the analogue host rock from a shallow, low-to-medium temperature geothermal system surrounding the Liquiñe area in Southern Chile (39°S) to better constrain intrinsic and extrinsic factors which allow permeable pathways to exist. We analyse the effect of thermal stress at 25, 150, and 210 °C in a granodiorite, measuring some petrophysical properties before and after applying thermal damage, and then loaded the samples until failure. We also compared petrophysical properties with the fracture network characterization using X-ray microcomputed tomography imaging, segmentation, and fluid flow computational simulations. The results show that thermal stress produces intercrystalline microcracks, which result in: (1) an increase in capillary absorption; (2) a decrease in ultrasonic wave velocities; (3) a decrease in compressive strength; (4) a decrease in fracture aperture, and (5) fluid flow simulations indicate that permeability is similar at different temperatures. We conclude that for the granodiorite host rock of the Liquiñe geothermal system, the combined effect of thermal stress, even at low temperature, may constitute an effective mechanism for sustaining permeability at shallowest depths.

Keywords

Primary low-permeability granitoids Thermal decay Artificial fractures Image analysis Geothermal system 

Notes

Acknowledgements

This study is a contribution to the FONDAP-CONICYT project no 15090013 (Comisión Nacional de Investigación Científica y Tecnológica) (Centro de Excelencia en Geotermia de los Andes, CEGA). The FONDECYT Regular project no 1180167 and PUC VRI-PUENTE P1703/2017 project supported this research. The FONDEQUIP project no EQM130028 provided the X-ray microcomputerized tomography equipment. For the cluster use, we thank Erik Saenger (International Geothermal Centre, GZB, Bochum, Germany) and especially Professor Rolf Bracke for facilitating our access. Eduardo Molina acknowledges the receipt of a Postdoctoral Grant from the School of Engineering at Pontificia Universidad Católica de Chile (DII-2017-631). Tomas Roquer acknowledges the support of Becas CONICYT Doctorado Nacional no 21171178. We thank Rodrigo Gomila and Gert Heuser for their support and enriched discussion regarding the results, and especially Patricia Vázquez for her valuable comments that helped in improving the discussion of the results. Finally, we also want to thank Reviewers for their comments and suggestions, which enhanced the manuscript.

Supplementary material

603_2019_1967_MOESM1_ESM.jpg (2.8 mb)
Appendix 1. The followed procedure, step by step, in the enhancement and segmentation of every stack to improve the digital analysis and to calculate the apertures of artificial fractures, and finally, the estimation of permeability model. (JPEG 2885 kb)

References

  1. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization, visualization handbook. Elsevier, New York (13: 978-0123875822) Google Scholar
  2. An S, Yao J, Yang Y, Zhang L, Zhao J, Gao Y (2016) Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. J Nat Gas Sci Eng 31:156–163CrossRefGoogle Scholar
  3. Anderson OL, Grew PC (1977) Stress corrosion theory of crack propagation with applications to geophysics. Rev Geophys 15:77–104CrossRefGoogle Scholar
  4. Anissofira A, Latief FDE (2015) Permeability estimation of crack type and granular type of pore space in a geothermal reservoir using Lattice Boltzmann method and Kozeny–Carman relation. In: Proceedings world geothermal congress 2015, 19–25 April, Melbourne, Australia, pp 1–8Google Scholar
  5. Arancibia G, Cembrano J, Lavenu A (1999) Transpresión dextral y partición de la deformación en la Zona de Falla Liquiñe–Ofqui, Aisén, Chile (44–45°S). Rev Geol Chile 26:03–22CrossRefGoogle Scholar
  6. Aravena D, Muñoz M, Morata D, Lahsen A, Parada MA, Dobson P (2016) Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics 59:1–13CrossRefGoogle Scholar
  7. ASTM D 2845-05 (2005) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM International, West Conshohocken, PA. https://www.astm.org/
  8. Ayachit U (2015) The ParaView guide: a parallel visualization application. Kitware, New York (ISBN 978-1930934306) Google Scholar
  9. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sust Energy Rev 6:3–65CrossRefGoogle Scholar
  10. Bauer JF, Krumbholz M, Meier S, Tanner DC (2017) Predictability of properties of a fractured geothermal reservoir: the opportunities and limitations of an outcrop analogue study. Geotherm Energy 5:1–27CrossRefGoogle Scholar
  11. Berg CF, Lopez O, Berland H (2017) Industrial applications of digital rock technology. J Pet Sci Eng 157:131–147CrossRefGoogle Scholar
  12. Bisdom K, Bertotti G, Nick HM (2016) The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. J Geophys Res Solid Earth 121:4045–4063.  https://doi.org/10.1002/2015JB012657 CrossRefGoogle Scholar
  13. Blaisonneau A, Peter-Borie M, Gentier S (2016) Evolution of fracture permeability with respect to fluid/rock interactions under thermohydromechanical conditions: development of experimental reactive percolation tests. Geotherm Energy 4(3):1–28Google Scholar
  14. Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39:347–383CrossRefGoogle Scholar
  15. Browning J, Meredith P, Gudmundsson A (2016) Cooling-dominated cracking in thermally stressed volcanic rocks. Geophys Res Lett 43:8417–8425CrossRefGoogle Scholar
  16. Bultreys T, De Boever W, Cnudde V (2016) Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci Rev 155:93–128CrossRefGoogle Scholar
  17. Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471:96–113CrossRefGoogle Scholar
  18. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe–Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66CrossRefGoogle Scholar
  19. Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22:1456–1461CrossRefGoogle Scholar
  20. Chen Y, Hu S, Wei K, Hu R, Zhou C, Jing L (2014) Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite. Int J Rock Mech Min 71:64–76CrossRefGoogle Scholar
  21. Chen S, Chunhe Y, Wang G (2017) Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng 110:1533–1542CrossRefGoogle Scholar
  22. Cid HE, Carrasco-Núñez G, Manea VC (2017) Improved method for effective rock microporosity estimation using X-ray microtomography. Micron 97:11–21CrossRefGoogle Scholar
  23. Cloetingh S, Van Wees JD (2017) Thermo-mechanical controls on geothermal energy resources: case studies in the Pannonian Basin and other natural laboratories. Acta Geod Geophys 52:157–160CrossRefGoogle Scholar
  24. Cnudde V (2005) Exploring the potential of X-ray tomography as a new non-destructive research tool in conservation studies of natural building stone. Ph.D. Thesis, Ghent University, Gent (Belgium)Google Scholar
  25. Cox SF, Braun J, Knackstedt MA (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24CrossRefGoogle Scholar
  26. Crain PE (2013) Crain’s petrophysical handbook. SONIC TRAVEL TIME (SLOWNESS) LOGS. https://www.spec2000.net/00-index.htm. Accessed 30 July 2018
  27. Dabor M, Faramarzi L, Sharifzadeh M (2018) Size-dependent compressive strength properties of hard rocks and rock-like cementitious brittle materials. Geosyst Eng.  https://doi.org/10.1080/12269328.2018.1431961 CrossRefGoogle Scholar
  28. Darot M, Gueguen Y, Baratin ML (1992) Permeability of thermally cracked granite. Geophys Res Lett 19:839–872CrossRefGoogle Scholar
  29. David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min 36:433–448CrossRefGoogle Scholar
  30. Dippernaar MA, Van Rooy JL (2016) On the cubic Law and variably saturated flow through discrete open rough-walled discontinuities. Int J Rock Mech Min 89:200–211CrossRefGoogle Scholar
  31. Doube M, Kłosowski MM, Arganda-Carreras I (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079 (PMID 20817052. Plugin version 1.4.2) CrossRefGoogle Scholar
  32. Dougherty RP, Kunzelmann KH (2007) Computing local thickness of 3D structures with ImageJ. In: Microscopy and Microanalysis Meeting; Ft. Lauderdale, Florida. Conference. Presentation: http://www.optinav.com/LocalThicknessEd.pdf. Accessed 11 Nov 2018
  33. Faoro I, Vinciguerra S, Marone C, Elsworth D, Schubnel A (2013) Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophys Ress Lett 40:2590–2595CrossRefGoogle Scholar
  34. Fortin J, Stanchist S, Vinciguerra S, Guéguen Y (2011) Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure. Tectonophysics 503:60–74CrossRefGoogle Scholar
  35. Fredrich JT, Wong T (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91:12743–12764CrossRefGoogle Scholar
  36. Géraud Y (1994) Variations of connected porosity and inferred permeability in a thermally cracked granite. Geophys Res Lett 21:979–982CrossRefGoogle Scholar
  37. Ghamgosar M (2017) Micromechanical and microstructural aspects affecting rock damage, fracture and cutting mechanisms. Ph.D. thesis, The University of QueenslandGoogle Scholar
  38. Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LPH, Jellinek M (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38:1–6CrossRefGoogle Scholar
  39. Gomila R, Arancibia G, Mitchell TM, Cembrano JM, Faulkner DR (2016) Palaeopermeability structure within fault-damage zones: a snap-shot from microfracture analyses in a strike-slip system. J Struct Geol 83:103–120CrossRefGoogle Scholar
  40. Gong J, Rosse WR (2017) Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow. Pet Sci 14:138–154CrossRefGoogle Scholar
  41. Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min 100:138–150CrossRefGoogle Scholar
  42. Gudmundsson A (2011) Rock fractures in geological processes. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511975684 CrossRefGoogle Scholar
  43. Guéguen Y, Sarout J (2011) Characteristics of anisotropy and dispersion in cracked medium. Tectonophysics 503:165–172CrossRefGoogle Scholar
  44. Hamad AJ (2017) Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres. J King Saud Univ Eng Sci 29:373–380Google Scholar
  45. Healy D, Rizzo RE, Cornwell DG, Farrel NJC, Watkins H, Timms NE, Gomez-Rivas E, Smith M (2017) FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns. J Struct Geol 95:1–16CrossRefGoogle Scholar
  46. Held S, Schill E, Pavez M, Díaz D, Muñoz G, Morata D, Kohl T (2016) Resistivity distribution from mid-crustal conductor to near-surface across the 1200 km long Liquiñe–Ofqui Fault System, southern Chile. Geophys J Int 207:1387–1400CrossRefGoogle Scholar
  47. Held S, Schill E, Schneider J, Nitschke F, Morata D, Neumann T, Kohl T (2018) Geochemical characterization of the geothermal system at Villarrica volcano, Southern Chile; Part 1: impacts of lithology on the geothermal reservoir. Geothermics 74:226–239CrossRefGoogle Scholar
  48. Hervé F (1994) The southern Andes between 39° and 44°S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc. In: Reutter K-J, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes. Springer, Berlin, Heidelberg, pp 243–248Google Scholar
  49. Hofmann H, Blöcher G, Milsch H, Babadagli T, Zimmermann G (2016) Transmissivity of aligned and displaced tensile fractures in granitic rocks during cyclic loading. Int J Rock Mech Min Sci 87:69–84CrossRefGoogle Scholar
  50. Indraratna B, Price J, Ranjith P, Gale W (2002) Some aspects of unsaturated flow in jointed rock. Int J Rock Mech Min Sci 39:555–568CrossRefGoogle Scholar
  51. Ingebritsen SE, Mannin CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205Google Scholar
  52. Isaka BLA, Gamage RP, Rathnaweera TD, Perera MSA, Chandrasekharam D, Kumari WGP (2018) An influence of thermally-induced micro-cracking under cooling treatments: mechanical characteristics of Australian Granite. Energies 11:1338CrossRefGoogle Scholar
  53. Ishii E, Funaki H, Tokiwa T, Ota K (2010) Relationship between fault growth mechanism and permeability variations with depth of siliceous mudstones in northern Hokkaido, Japan. J Struct Geol 32:1792–1805CrossRefGoogle Scholar
  54. Jin P, Hu Y, Shao J, Zhao G, Zhu X, Li C (2019) Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics 78:118–128CrossRefGoogle Scholar
  55. Kant MA, Ammann J, Rossi E, Madonna C, Höser D, von Rohr PR (2017) Thermal properties of Central Aare granite for temperatures up to 500 °C: irreversible changes due to thermal crack formation. Geophys Res Lett 44:771–776CrossRefGoogle Scholar
  56. Kluge C, Milsch H, Blöcher G (2017) Permeability of displaced fractures. Energy Proced 125:88–97CrossRefGoogle Scholar
  57. Koike K, Kubo T, Chunxue L, Masoud A, Amano K, Kurihara A, Matsuoka T, Lanyon B (2015) 3D geostatistical modelling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution. Tectonophysics 660:1–16CrossRefGoogle Scholar
  58. Kushnir ARL, Heap MJ, Baud P, Gilg HA, Reuschlé T, Lerouge C, Dezayes C, Duringer P (2018) Characterizing the physical properties of rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine Graben. Geotherm Energy 6(16):1–32Google Scholar
  59. Lahsen A, Rojas J, Morata D, Aravena D (2015a) Geothermal exploration in Chile: country update. World Geotherm Congr 2015:1–7Google Scholar
  60. Lahsen A, Rojas J, Morata D, Aravena D (2015b) Exploration for High-temperature Geothermal Resources in the Andean Countries of South America. World Geotherm Congr 2015:19–25Google Scholar
  61. Lara L, Moreno H (2004) Geología del área Liquiñe–Neltume, regiones de La Araucanía y de Los Lagos, Escala 1:100,000. Carta Geológica de Chile, Serie Geología Básica n.83. SERNAGEOMIN, Santiago, ChileGoogle Scholar
  62. Lara L, Lavenu A, Cembrano J, Rodriguez C (2006) Structural controls of volcanism in transversal chains: resheared faults and neotectonics in the Cordón Caulle-Puyehue area (40.5°S), Southern Andes. J Volcanol Geotherm Res 158:70–86CrossRefGoogle Scholar
  63. Lou J, Zhu Y, Guo Q, Tan L, Zhuang Y, Liu M, Zhang C, Xiang W, Rohn J (2017) Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite. Nat Sci Rep 7:39882CrossRefGoogle Scholar
  64. Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93CrossRefGoogle Scholar
  65. Makedonska N, Hyman D, Karra S, Painter SL, Gable CW, Viswanathan HS (2016) Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Adv Water Resour 94:486–497CrossRefGoogle Scholar
  66. Mallet C, Fortin J, Guéugen Y, Bouyer F (2013) Effective elastic properties of cracked solids: an experimental investigation. Int J Fract 182:275–282CrossRefGoogle Scholar
  67. Mallet C, Fortin J, Guéugen Y, Bouyer F (2014) Evolution of the crack network in glass samples submitted to brittle creep conditions. Int J Fract 190:111–124CrossRefGoogle Scholar
  68. Martín-Gamboa M, Iribarren D, Dufour J (2015) On the environmental suitability of high- and low-enthalpy geothermal systems. Geothermics 53:27–37CrossRefGoogle Scholar
  69. Matthäi SK, Belayneh M (2004) Fluid flow partitioning between fractures and a permeable rock matrix. Geophys Res Lett 31(L07602):1–5Google Scholar
  70. Meller C, Bremer J, Baur S, Bergfeldt T, Blum P, Canic T, Eich E, Gaucher E, Hagenmeyer V, Heberling F, Held S, Herfurth S, Isele J, Kling T, Kuhn D, Kumar A, Mayer D, Müller B, Neumann T, Nestler B, Nitschke F, Nothstein A, Nusiaputra Y, Orywall P, Peters M, Sahara D, Schäfer T, Schill E, Schilling F, Schröder E, Selzer M, Stoll M, Wiemer HJ, Wolf S, Zimmermann M, Hohl T (2017) Integrated research as key to the development of a sustainable geothermal energy technology. Energy Technol 5:965–1006CrossRefGoogle Scholar
  71. Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). Spec Paper Geol Soc Am 407:73–95Google Scholar
  72. Meng X, Liu W, Meng T (2018) Experimental investigation of thermal cracking and permeability evolution of granite with varying initial damage under high temperature and triaxial compression. Adv Mater Sci Eng.  https://doi.org/10.1155/2018/8759740 (ID 8759740) CrossRefGoogle Scholar
  73. Mielke P, Nehler M, Bignall G, Sass I (2015) Thermo-physical rock properties and the impact of advancing hydrothermal alteration—a case from the Tauhara geothermal field, New Zealand. J Volcanol Geotherm Res 301:14–28CrossRefGoogle Scholar
  74. Mitchell TM, Faulkner DR (2008) Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J Geophys Res 113:B11412.  https://doi.org/10.1029/2008JB005588 CrossRefGoogle Scholar
  75. Mitchell T, Faulkner DR (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J Struct Geol 31:802–816CrossRefGoogle Scholar
  76. Moeck I (2014) Catalog of geothermal play types based on geologic controls. Renew Sust Energy Rev 37:867–882CrossRefGoogle Scholar
  77. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121CrossRefGoogle Scholar
  78. Molina E, Cultrone G, Sebastián E, Alonso FJ (2013) Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J Geophys Eng 10:035003CrossRefGoogle Scholar
  79. Müller J, Galgaro A, Dalla Santa G, Cultrera M, Karytsas C, Mendrinos D, Pera S, Perego R, O’Neill N, Pasquali R, Vercruysse J, Rossi L, Bernardi A, Bertermann D (2018) Generalized pan-European geological database for shallow geothermal installations. Geosciences 8:1–15CrossRefGoogle Scholar
  80. Munizaga F, Hervé F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of south-central Chile (39°–42°S). Preliminary results. J S Am Earth Sci 1:309–316CrossRefGoogle Scholar
  81. Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503:52–59CrossRefGoogle Scholar
  82. Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated Westerly Granite. Pure Appl Geophys 166:801–822CrossRefGoogle Scholar
  83. Nicco M, Holley EA, Hartlieb P, Kaunda R, Nerlson PP (2018) Methods for characterizing cracks induced in rock. Rock Mech Rock Eng 51:2075–2093CrossRefGoogle Scholar
  84. Olson JE, Laubach SE, Lander RH (2009) Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis. AAPG Bull 93:1535–1549CrossRefGoogle Scholar
  85. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  86. Pérez-Flores P, Cembrano J, Sánchez-Alfaro P, Veloso E, Arancibia G, Roquer T (2016) Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: insights from the northern termination of the Liquiñe–Ofqui fault System, Chile. Tectonophysics 680:192–210CrossRefGoogle Scholar
  87. Pérez-Flores P, Wang G, Mitchell TM, Meredith PG, Nara Y, Sarkar V, Cembrano J (2017) The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J Struct Geol 104:142–158CrossRefGoogle Scholar
  88. Quick H, Michael J, Arslan U, Huber H (2013) Geothermal application in low-enthalpy regions. Renew Energ 49:133–136CrossRefGoogle Scholar
  89. Ramandi HL, Mostaghimi P, Armstrong RT (2017) Digital rock analysis for accurate prediction of fractured media permeability. J Hydrol 554:817–826CrossRefGoogle Scholar
  90. Ranjith PG, Viete DR (2011) Applicability of the ‘cubic law’ for non-Darcian fracture flow. J Pet Sci Eng 78:321–327CrossRefGoogle Scholar
  91. Ranjram M, Gleeson T, Luijendijk E (2015) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119CrossRefGoogle Scholar
  92. Rivera O, Cembrano J (2000) Modelo de formación de cuencas volcano-tectónicas en zonas de transferencia oblicuas a la cadena andina: el caso de las cuencas oligo-miocénicas de Chile central y su relación con estructuras NWW-NW (33°00′–34°30′S). In: IX Chilean Geological Congress, 5, Puerto Varas, Chile Google Scholar
  93. Rizzo RE, Healy D, De Siena L (2017) Benefits of maximum likelihood estimators for fracture attribute analysis: implication for permeability and up-scaling. J Struct Geol 95:17–31CrossRefGoogle Scholar
  94. Rong G, Peng J, Yao M, Jiang Q, Wong LNY (2018) Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble. Eng Geol 232:46–55CrossRefGoogle Scholar
  95. Roquer T, Arancibia G, Rowland J, Iturrieta P, Morata D, Cembrano J (2017) Fault-controlled development of shallow hydrothermal systems: structural and mineralogical insights from the Southern Andes. Geothermics 66:156–173CrossRefGoogle Scholar
  96. Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25:1–16CrossRefGoogle Scholar
  97. Rowland JV, Sibson RH (2004) Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4:259–283CrossRefGoogle Scholar
  98. Ruiz de Argandoña VG, Calleja L, Montoto M (1985) Determinación experimental del umbral de microfisuración térmica de la “roca matriz” o “intact rock”. Trabajos de Geología 15:299–307Google Scholar
  99. Ruiz de Argandoña VG, Calleja L, Suarez del Rio LM, Montoto M (1986) Emisión acústica/actividad microsísmica generada bajo ciclos térmicos en una roca granítica. In: Boletín Geológico Minero XCVII-I. pp 96–102Google Scholar
  100. Rutqvist J (2015) Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings. Geofluids 15:48–66CrossRefGoogle Scholar
  101. Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40CrossRefGoogle Scholar
  102. Sánchez P, Pérez-Flores P, Arancibia G, Cembrano J, Reich M (2013) Crustal deformation effects on the chemical evolution of geothermal systems: the intra-arc Liquiñe–Ofqui fault system, Southern Andes. Int Geol Rev 55:1384–1400CrossRefGoogle Scholar
  103. Sánchez-Alfaro P, Reich M, Arancibia G, Pérez-Flores P, Cembrano J, Driesner T, Lizama M, Rowland J, Morata D, Heinrich CCA, Tardani D, Campos E (2016) Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: insights into the interplay between hydrothermal alteration and brittle deformation. J Volcanol Geotherm Res 324:88–104CrossRefGoogle Scholar
  104. Sanderson D, Nixon C (2015) The use of topology in fracture network characterization. J Struct Geol 72:55–66CrossRefGoogle Scholar
  105. Saxena N, Mavko G (2016) Estimating elastic moduli of rocks from thin sections: digital rock study of 3D properties from 2D images. Comput Geosci 88:9–21CrossRefGoogle Scholar
  106. Saxena N, Hofmann R, Alpak FO, Dietderich J, Hunter S, Day-Stirrat RJ (2017) Effect of image segmentation and voxel size on micro-CT computed effective transport and elastic properties. Mar Pet Geol 86:972–990CrossRefGoogle Scholar
  107. Schindelin J, Arganda-Carreras I, Frise E (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 (PMID 22743772. Software version 1.52b) CrossRefGoogle Scholar
  108. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675 (PMID 22930834) CrossRefGoogle Scholar
  109. Schön JH (2015) Physical properties of rocks: fundamentals and principles of petrophysics. Handbook of geophysical exploration. Section I, seismic exploration, vol. 18, 2nd edn. Pergamon, New YorkGoogle Scholar
  110. Seebeck H, Nicol A, Walsh JJ, Childs C, Beetham RD, Pettinga J (2014) Fluid flow in fault zones from an active rift. J Struct Geol 62:52–64CrossRefGoogle Scholar
  111. Sepúlveda J (2019) Thermo-mechanical behavior of the granodiorite at the Liquiñe fractured geothermal system (39°S), related to fault system in the Southern Volcanic Zone. Master’s thesis, Pontificia Universidad Católica de Chile, Santiago, ChileGoogle Scholar
  112. Shortall R, Davidsdottir B, Axelsson G (2015) Geothermal energy for sustainable development: a review of sustainability impacts and assessment frameworks. Renew Sust Energy Rev 44:391–406CrossRefGoogle Scholar
  113. Sibson RH (1996) Structural permeability of fluid-driven fault fracture meshes. J Struct Geol 18:1031–1042CrossRefGoogle Scholar
  114. Sielfeld G, Cembrano J, Lara L (2016) Transtension driving volcano-edifice anatomy: insights from Andean transverse-to-the-orogen tectonic domains. Quat Int 438:33–49CrossRefGoogle Scholar
  115. Siratovich PA, Villeneuve MC, Cole JW, Kennedy BM, Bégué F (2015) Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. Int J Rock Mech Min Sci 80:265–280CrossRefGoogle Scholar
  116. Snow DT (1968) Rock fracture spacings, openings, and porosities. J Soil Mech Found Div 94:73–91Google Scholar
  117. Song F, Dong YH, Xu ZF, Zhou PP, Wang LH, Tong SQ (2016) Granite microcracks: structure and connectivity at different depths. J Asian Earth Sci 124:156–168CrossRefGoogle Scholar
  118. Stanton-Yonge A, Griffith WA, Cembrano J, St. Julien R, Iturrieta P (2016) Tectonic role of margin-parallel and margin-transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: insights from boundary element modeling. Tectonics 35:1990–2013CrossRefGoogle Scholar
  119. Sun H, Vega S, Tao G (2017) Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J Pet Sci Eng 156:419–429CrossRefGoogle Scholar
  120. Sun Q, Zhang W, Zhu Y, Huang Z (2019) Effect of high temperatures on the thermal properties of granite. Rock Mech Rock Eng.  https://doi.org/10.1007/s00603-019-1733-0 CrossRefGoogle Scholar
  121. Tarasovs S, Ghassemi A (2014) Self-similarity and scaling of thermal shock fractures. Phys Rev E 90:012403CrossRefGoogle Scholar
  122. Tardani D, Reich M, Roulleau E, Takahata N, Sano Y, Pérez-Flores P, Sánchez-Alfaro P, Cembrano J, Arancibia G (2016) Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system. Geochim Cosmochim A 184:193–211CrossRefGoogle Scholar
  123. Thuro K, Plinninger RJ, Zäh S, Schütz S (2001) Scale effects in rock strength properties. Part 1: unconfined compressive test and Brazilian test. In: ISRM Regional Symposium EUROCK 2001. Rock mechanics a challenge for society, Finland, pp 169–174Google Scholar
  124. Tschumperle D, Deriche R (2003) Vector-valued image regularization with PDE: a common framework for different applications. Published in CVPR2003—IEEE conference on computer vision and pattern recognition, Madison (USA), June 2003Google Scholar
  125. UNE-EN 1925 (2000) Natural stone test methods. Determination of water absorption coefficient by capillarity. AENOR, MadridGoogle Scholar
  126. UNE-EN 1926 (2007) Natural stone test methods. Determination of uniaxial compressive strength. AENOR, MadridGoogle Scholar
  127. UNE-EN 1936 (2007) Natural stone test methods. Determination of real density and apparent density, and of total and open porosity. AENOR, MadridGoogle Scholar
  128. Uribe-Patiño JA, Alzate-Espinosa GA, Arbélez-Londoño A (2017) Geomechanical aspects of reservoir thermal alteration: a literature review. J Pet Sci Eng 152:250–266CrossRefGoogle Scholar
  129. Vazquez P, Sánchez-Delgado N, Carrizo L, Thomachot-Schneider C, Alonso FJ (2018) Statistical approach of the influence of petrography in mechanical properties and durability of granitic stones. Environ Earth Sci 77:287CrossRefGoogle Scholar
  130. Vázquez P, Shushakova V, Gómez-Heras M (2015) Influence of mineralogy on granite decay induced by temperature increase: experimental observation and stress simulation. Eng Geol 189:58–67CrossRefGoogle Scholar
  131. Verri I, Della Torre A, Montenegro G, Onorati A, Duca S, Mora CA, Radaelli F, Trombin G (2017) Development of a digital rock physics workflow for the analysis of sandstone and tight rocks. J Pet Sci Eng 156:790–800CrossRefGoogle Scholar
  132. Violay M, Heap MJ, Acosta M, Madonna C (2017) Porosity evolution at the brittle-ductile transition in the continental crust: implications for deep hydro-geothermal circulation. Sci Rep 7:1–10CrossRefGoogle Scholar
  133. Voorn M, Exner U, Rath A (2013) Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci 57:44–53CrossRefGoogle Scholar
  134. Voorn M, Exner U, Barnhoorn A, Baud P, Reuschlé T (2015) Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples. J Pet Sci Eng 127:270–285CrossRefGoogle Scholar
  135. Walter B, Géraud Y, Bartier D, Kluska JM, Diraison M, Morlot C, Raisson F (2018) Petrophysical and mineralogical evolution of weathered crystalline basement in western Uganda: implications for fluid transfer and storage. AAPG Bull 102:1035–1065CrossRefGoogle Scholar
  136. Weickert J (1998) Anisotropic diffusion in image processing. ECMI series, vol 256. Teubner, Stuttgart, p 170Google Scholar
  137. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid-flow in a deformable rock fracture. Water Resour Res 16:1016–1024CrossRefGoogle Scholar
  138. Wrage J, Tardani D, Reich M, Daniele L, Arancibia G, Cembrano J, Sánchez-Alfaro P, Morata D, Pérez-Moreno R (2017) Geochemistry of thermal waters in the Southern Volcanic Zone, Chile—implications for structural controls on geothermal fluid composition. Chem Geol 466:545–561CrossRefGoogle Scholar
  139. Yáñez G, Gana P, Fernández R (1998) Origen y significado geológico de la Anomalía Melipilla, Chile central. Rev Geol Chile 25:175–198CrossRefGoogle Scholar
  140. Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197CrossRefGoogle Scholar
  141. Yilmaz NG, Karaca Z, Goktan R, Akal C (2009) Relative brittleness characterization of some selected granitic building stones: influence of mineral grain size. Constr Build Mater 2:370–375CrossRefGoogle Scholar
  142. Yu Q, Zhu W, Ranjith PG, Shao S (2018) Numerical simulation and interpretation of the grain size effect on rock strength. Geophys Geoenergy Georesour, Geomech.  https://doi.org/10.1007/s40948-018-0080-z CrossRefGoogle Scholar
  143. Zhang X, Jeffrey RG, Wu B (2015) Mechanics of edge crack growth under transient pressure and temperature conditions. Int J Solids Struct 69–70:11–22CrossRefGoogle Scholar
  144. Zhu Q, Shao J (2016) Micromechanics of rock damage: advances in the quasi-brittle field. J Rock Mech Geotech Eng 9:29–40CrossRefGoogle Scholar
  145. Zhu S, Zhang W, Sun Q, Deng S, Geng J, Li C (2017) Thermally induced variation of primary wave velocity in granite from Yantai: experimental and modeling results. Int J Therm Sci 114:320–326CrossRefGoogle Scholar
  146. Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Trans Porous Media 23:1–30CrossRefGoogle Scholar
  147. Zuo JP, Wang JT, Sun YJ, Chen Y, Jiang GH, Li YH (2017) Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng Fract Mech 182:425–437CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Estructural y Geotécnica, Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Excelencia en Geotermia de los Andes (CEGA, FONDAP-CONICYT)Universidad de ChileSantiagoChile
  3. 3.Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC)Pontificia Universidad Católica de ChileSantiagoChile
  4. 4.Departamento de Ciencias de la Computación, Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Departamento de Geología, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations