Advertisement

Rock Mechanics and Rock Engineering

, Volume 52, Issue 10, pp 3627–3643 | Cite as

Coupled Modeling of Sedimentary Basin and Geomechanics: A Modified Drucker–Prager Cap Model to Describe Rock Compaction in Tectonic Context

  • N. GuyEmail author
  • D. Colombo
  • J. Frey
  • T. Cornu
  • M. C. Cacas-Stentz
Original Paper

Abstract

The aim of basin modeling is to characterise fluids and rocks in a basin considering its history and data partly describing its present state. In usual basin simulators, only a simplified description of geomechanics based on the hypothesis of oedometric strain is used. To both enhance the modeling of basin history and to characterise actual in situ stresses, the effect of stress redistribution, horizontal stresses, and strain variations during basin history should be considered. To address this point, a coupled basin-geomechanics framework based on a new constitutive law is proposed in this paper using the prototype simulator \(\mathrm{A}^{2}\). This framework has been built to provide relevant results for various kinds of basin cases including tectonic loading. A finite strain poromechanical approach is considered along with an modified Drucker–Prager Cap model to describe rock compaction under natural sedimentation, erosion, and tectonics. The constitutive model can be seen as a tensorial extension of the compaction models of Athy or Schneider as it allows to recover the same behaviour in oedometric context. Simple test cases are modeled considering typical sand or shale properties, emphasizing the effect of tectonic loading on the present-day pore pressures and in situ stresses. It appears that even relatively moderate tectonic loading (\(5\%\) of horizontal strain) can lead to overpressures of several hundreds of bars and to a complete change in in situ stress regime for deeply buried layers (above a depth of 2000 m).

Keywords

Basin modeling Compaction Geomechanical coupling Finite strain 

List of symbols

\(\sigma _\mathrm{eff}\)

Basin modeling vertical effective stress

\(\sigma _\mathrm{v}\)

Vertical total stress

p

Pore pressure

\(\phi\)

Eulerian porosity

\(\phi _{0}\)

Initial porosity

\(\kappa\)

Athy’s law compaction parameter

\(\phi _\mathrm{r}\)

Residual porosity

\(\phi _\mathrm{a}\)

Schneider’s law compaction parameter

\(\phi _\mathrm{b}\)

Schneider’s law compaction parameter

\(\sigma _\mathrm{a}\)

Schneider’s law compaction parameter

\(\sigma _\mathrm{b}\)

Schneider’s law compaction parameter

\({\varvec{\sigma }}\)

Total stress tensor

\(\rho _\mathrm{h}\)

Homogeneized density

\({\varvec{g}}\)

Gravity

\(\rho _\mathrm{f}\)

Fluid density

\(\rho _\mathrm{s}\)

Solid density

t

Time

\(\varPhi\)

Lagrangian porosity

J

Jacobian of the geometrical transformation

\({\varvec{\eta }}\)

The fluid flow

\({\varvec{k}}\)

The permeability tensor

\({\varvec{\nabla }}\)

Gradient operator

\(\varOmega _{0}\)

Initial state

\(\varOmega _\mathrm{t}\)

Current state

\(\varOmega _\mathrm{u}\)

Unloaded state

\({\varvec{F^\mathrm{t}}}\)

Transformation between the states \(\varOmega _{0}\) and \(\varOmega _\mathrm{t}\)

\({\varvec{F^\mathrm{p}}}\)

Transformation between the states \(\varOmega _{0}\) and \(\varOmega _\mathrm{u}\)

\({\varvec{F^\mathrm{e}}}\)

Transformation between the states \(\varOmega _\mathrm{u}\) and \(\varOmega _\mathrm{t}\)

\(\phi _\mathrm{p}\)

Plastic Eulerian porosity

\(\phi _\mathrm{u}\)

Eulerian porosity of the unloaded state

\(J^\mathrm{p}\)

Determinant of the transformation \({\varvec{F^\mathrm{p}}}\)

\({\varvec{\sigma '}}\)

Effective stress tensor

\(\sigma _{zz}'\)

Vertical effective stress

b

Biot coefficient

M

Biot modulus

\({\varvec{\varOmega }}\)

Spin rate tensor

\({\varvec{d_\mathrm{p}}}\)

Plastic strain rate tensor

\({\varvec{d}}\)

Total strain rate tensor

\(F_\mathrm{s}\)

Yield surface associated with shear plasticity

\(G_\mathrm{s}\)

Plastic potential associated with shear plasticity

\(F_\mathrm{c}\)

Yield surface associated with plastic compaction

\(G_\mathrm{c}\)

Plastic potential associated with plastic compaction

q

Equivalent stress

\(p'\)

Mean effective stress

\(\beta\)

Internal friction angle

c

Cohesion

\({\varvec{s}}\)

Deviatoric stress tensor

\({\varvec{I}}\)

Identity tensor of the second order

\(p'_\mathrm{l}\)

Mean effective stress corresponding to the limit between shear and compaction plasticity

\(p'_\mathrm{c}\)

Consolidation pressure

r

Shape of the cap

\(\kappa '\)

Compaction parameter of tensorial Athy’s law

\(p'_\mathrm{a}\)

Compaction parameter of tensorial Schneider’s law

\(p'_\mathrm{b}\)

Compaction parameter of tensorial Schneider’s law

\({{\mathcal {I}}}\)

Identity tensor of the fourth order

K

Bulk modulus

G

Shear modulus

\(K_\mathrm{s}\)

Grain bulk modulus

\(G_\mathrm{s}\)

Grain shear modulus

\(K_{0}\)

Initial bulk modulus

\(G_{0}\)

Initial shear modulus

\(\xi\)

Conversion parameter

\(\alpha\)

Anisotropy coefficient of the permeability tensor

\(k_\mathrm{h}\)

Horizontal permeability

\(k_\mathrm{v}\)

Vertical permeability

\(s_{0}\)

Specific surface

Notes

Acknowledgements

This work was funded by the NOMBA project.

References

  1. Adjukiewicz JM, Lander RH (2010) Sandstone reservoir quality prediction: the state of the art. AAPG Bull 94:1083–1091CrossRefGoogle Scholar
  2. Athy LF (1930) Density, porosity and compaction of sedimentary rocks. AAPG Bull 14:1–24Google Scholar
  3. Bernaud D, Deudé V, Dormieux L, Maghous S, Schmitt DP (2002) Evolution of elastic properties in finite poroplasticity and finite element analysis. Int J Numer Anal Methods Geomech 26:845–871CrossRefGoogle Scholar
  4. Bernaud D, Dormieux L, Maghous S (2006) A constitutive and numerical model for mechanical compaction in sedimentary basins. Comput Geotech 33:316–329CrossRefGoogle Scholar
  5. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRefGoogle Scholar
  6. Bourgeois E (1997) Mécanique des milieux poreux en transformation finie : formulation des problèmes et méthodes de résolution. Thèse de l’Ecole Nationale des Ponts et ChausséesGoogle Scholar
  7. Breckels IM, van Eekelen HAM (1982) Relationship between horizontal stress and depth in sedimentary basins. J Pet Tech 34:2191–2199CrossRefGoogle Scholar
  8. Brüch A, Maghous S, Ribeiro FLB, Dormieux L (2018) A thermo-poro-mechanical constitutive and numerical model for deformation in sedimentary basins. J Pet Sci Eng 160:313–326CrossRefGoogle Scholar
  9. Carman PC (1939) Permability of saturated sands, soils and clays. J Agric Sci 93:7729–7740Google Scholar
  10. Code\_Aster (2017) EDF R&D. http://www.code-aster.org
  11. Coussy O (1991) Mécanique des milieux, poreux. Edition Technip, ParisGoogle Scholar
  12. Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42:259–288CrossRefGoogle Scholar
  13. Deudé V, Dormieux L, Maghous S, Barthélémy JF, Bernaud D (2004) Compaction process in sedimentary basins: the role of stiffness increase and hardening induced by large strains. Int J Numer Anal Methods Geomech 28:1279–1303CrossRefGoogle Scholar
  14. DiMaggio FL, Sandler IS (1971) The effect of strain rate on the constitutive equation of rocks. Defense Nuclear Agency 2801TGoogle Scholar
  15. Doyen PM (1988) Permability, conductivity, and pore geometry of sandstone. J Geophys Res 93:7729–7740CrossRefGoogle Scholar
  16. Faille I, Thibaut M, Cacas MC, Havé P, Willien F, Wolf S, Agelas L, Pegaz-Fiornet S (2014) Modeling fluid flow in faulted basins. Oil Gas Sci Tech 69:529–553CrossRefGoogle Scholar
  17. Garner S, Strong J, Zavaliangos A (2015) The extrapolation of the Drucker–Prager/Cap material parameters to low and high relative densities. Powder Technol 283:210–226CrossRefGoogle Scholar
  18. Giles MR (1991) Diagenesis : a quantitative perspective. In: Implications for basin modelling and rock property prediction. Kluwer, New YorkGoogle Scholar
  19. Grueschow E, Rudnicki JW (2005) Elliptic yield cap constitutive modeling for hig porosity sandstone. Int J Sol Struct 42:4574–4587CrossRefGoogle Scholar
  20. Guilmin AL (2012) Contribution de la mécanique à l’étude des bassins sédimentaires : modélisation de la compaction chimique et simulation de la compaction mécanique avec prise en compte d’effets tectoniques. Thèse de l’Université Paris-EstGoogle Scholar
  21. Guy N, Enchéry G, Renard G (2013) Numerical modeling of thermal EOR: comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics. Oil Gas Sci Tech 67:1019–1027CrossRefGoogle Scholar
  22. Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, BerlinGoogle Scholar
  23. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50:485–505Google Scholar
  24. Hedberg HD (1936) Gravitational compaction of clays and shales. Am J Sci 31:241–287CrossRefGoogle Scholar
  25. Houseknecht DW (1984) Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone. J Sedim Pet 54:348–361Google Scholar
  26. Houseknecht DW (1988) Intragranular pressure solution in four quartzose sandstones. J Sedim Pet 58:228–246Google Scholar
  27. Kozeny J (1927) Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss 136:271–306Google Scholar
  28. Luo X, Vasseur G (2002) Natural hydraulic cracking: numerical model and sensitivity study. Earth Planet Sci Let 201:431–446CrossRefGoogle Scholar
  29. Luo X, Pouya A, Lamoureux-Var V, Poliakov A, Vasseur G (1998) Elastoplastic deformation of porous media applied to the modelling of the compaction at the basin scale. Mar Pet Geol 15:145–162CrossRefGoogle Scholar
  30. Ma J (2017) An elasto-viscoplastic model for soft porous rocks within the consistent framework. Rock Mech Rock Eng 50:3109–3114CrossRefGoogle Scholar
  31. Magara K (1991) Compaction and fluid migration: practical petroleum geology. Elsevier, AmsterdamGoogle Scholar
  32. Maghous S, Brüch A, Bernaud D, Dormieux L, Braun L (2013) Two-dimensional finite element analysis of gravitational and lateral driven deformation in sedimentary basins. Int J Anal Methods Geomech 38:725–746CrossRefGoogle Scholar
  33. Obradors-Prats J, Rouainia M, Aplin AC, Crook AJL (2017) Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach. Mar Pet Geol 79:31–43CrossRefGoogle Scholar
  34. Ouraga Z, Guy N, Pouya A (2017) Modeling of natural fracture initiation and propagation in basin sedimentation context. J Geophys Res Solid Earth 122:247–261CrossRefGoogle Scholar
  35. Ouraga Z, Guy N, Pouya A (2018) Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins. Geophys J Int 213:798–804CrossRefGoogle Scholar
  36. Perez-Gandarillas L, Mazor A, Lecoq O, Michrafy A (2017) Compaction properties of dry granulated powders based on Drucker–Prager Cap model. Powder Technol (in press)Google Scholar
  37. Plumb RA (1994) Variations of the least horizontal stress magnitude in sedimentary rocks. In proceedings of \(1\)st North American rock mechanics symposium, 1–3 June 1994, AustinGoogle Scholar
  38. Schneider F, Hay S (2001) Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid-Norvegian Continental Shelf. Mar Pet Geol 18:833–848CrossRefGoogle Scholar
  39. Schneider F, Potdevin JL, Wolf S, Faille I (1996) Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics 263:307–313CrossRefGoogle Scholar
  40. Secor D (1969) Mechanisms of natural extension fracturing at depth in the Earth’s crust. Geol Surv Can Pap 68:3–48Google Scholar
  41. Sibson R (2003) Brittle failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull 87:901–908CrossRefGoogle Scholar
  42. Smith JE (1971) The dynamics of shale compaction and evolution of pore fluid pressure. Math Geol 3:239–263CrossRefGoogle Scholar
  43. Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent displacements in a circular tunnel. Int J Rock Mech Min Sci 24:155–164CrossRefGoogle Scholar
  44. TemisFlow (2017) Beicip-Franlab. http://www.beicip.com
  45. Terzaghi K (1923) Die berechnung der Duerchlassigkeitsziffer des Tones in Verlauf der hydrodynamischen Spannungserscheinungen. Szber Akad Wiss Vienna Math Naturwiss Klasse 132:125–138Google Scholar
  46. Wasantha PLP, Ranjith PG, Zhao J, Shao SS, Permata G (2015) Strain rate effect on the mechanical behaviour of sandstones with different grain sizes. Rock Mech Rock Eng 48:1883–1895CrossRefGoogle Scholar
  47. Woillez MN, Souque C, Rudkiewicz JL, Willien F, Cornu T (2017) Insights in fault flow behaviour from onshore Nigeria petroleum system modelling. Oil Gas Sci Tech 72:31–42Google Scholar
  48. Yang AY, Aplin AC (2010) A permeability–porosity relationship for mudstones. Mar Pet Geol 8:1692–1697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IFP Energies nouvellesRueil-Malmaison CedexFrance
  2. 2.Total Exploration Production Research and DevelopmentPauFrance

Personalised recommendations