Advertisement

Simulation of Fracture Coalescence in Granite via the Combined Finite–Discrete Element Method

  • Bryan EuserEmail author
  • E. Rougier
  • Z. Lei
  • E. E. Knight
  • L. P. Frash
  • J. W. Carey
  • H. Viswanathan
  • A. Munjiza
Original Paper
  • 225 Downloads

Abstract

Fracture coalescence is a critical phenomenon for creating large, inter-connected fractures from smaller cracks, affecting fracture network flow and seismic energy release potential. In this paper, simulations are performed to model fracture coalescence processes in granite specimens with pre-existing flaws. These simulations utilize an in-house implementation of the combined finite–discrete element method (FDEM) known as the hybrid optimization software suite (HOSS). The pre-existing flaws within the specimens follow two geometric patterns: (1) a single-flaw oriented at different angles with respect to the loading direction, and (2) two flaws, where the primary flaw is oriented perpendicular to the loading direction and the secondary flaw is oriented at different angles. The simulations provide insight into the evolution of tensile and shear fracture behavior as a function of time. The single-flaw simulations accurately reproduce experimentally measured peak stresses as a function of flaw inclination angle. Both the single- and double-flaw simulations exhibit a linear increase in strength with increasing flaw angle while the double-flaw specimens are systematically weaker than the single-flaw specimens.

Keywords

Crack interaction Propagation FDEM Normal and tangential crack propagation 

List of Symbols

Abbreviations

BD

Brazilian disk

BEM

Boundary element method

DEM

Discrete element method

FDEM

Finite–discrete element method

HOSS

Hybrid optimization software suite

UCS

Uniaxial compressive strength

Symbols

C

Damping matrix

M

Lumped mass matrix

f

Equivalent force vector

x

Displacement vector

c

Cohesion

D

Damage

GI

Mode I fracture energy

GII

Mode II fracture energy

\(\alpha\)

Angle of inclination

\({\delta ^{\text{e}}}\)

Elastic threshold relative displacement

\(\delta _{{\text{n}}}^{{\text{e}}}\)

Elastic threshold normal relative displacement

\(\delta _{{\text{t}}}^{{\text{e}}}\)

Elastic threshold tangential relative displacement

\({\delta ^{\rm{max} }}\)

Maximum relative displacement

\(\delta _{{\text{n}}}^{{\rm{max} }}\)

Maximum normal relative displacement

\(\delta _{{\text{t}}}^{{\rm{max} }}\)

Maximum tangential relative displacement

\({\mu _{\text{s}}}\)

Coefficient of static friction

\({\sigma _{\text{n}}}\)

Normal stress

\({\sigma _{\text{t}}}\)

Tangential stress

\({\sigma ^{\rm{max} }}\)

Maximum stress

\(\sigma _{{\text{n}}}^{{\rm{max} }}\)

Maximum normal stress

\(\sigma _{{\text{t}}}^{{\rm{max} }}\)

Maximum tangential stress

\({\phi _{\text{c}}}\)

Internal angle of friction

Notes

Acknowledgements

Support provided by the Department of Energy (DOE) Basic Energy Sciences program (DE-AC52-06NA25396). The authors would like to thank the LANL Institutional Computing program for their support in generating data used in this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Backers T (2004) Fracture toughness determination and micromechanics of rock under mode I and mode II loading. Dissertation, University of PostdamGoogle Scholar
  2. Bobet A (1997) Fracture coalescence in rock materials: experimental observations and numerical predictions. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  3. Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219.  https://doi.org/10.1016/S0013-7944(00)00009-6 CrossRefGoogle Scholar
  4. Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888.  https://doi.org/10.1016/S0148-9062(98)00005-9 CrossRefGoogle Scholar
  5. Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252.  https://doi.org/10.1023/A:1007460316400 CrossRefGoogle Scholar
  6. Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H (2015) Fracture-permeability behavior of shale. J Unconv Oil Gas Resour 11:27–43.  https://doi.org/10.1016/j.juogr.2015.04.003 CrossRefGoogle Scholar
  7. Elmo D, Stead D (2010) An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars. Rock Mech Rock Eng 43:3–19.  https://doi.org/10.1007/s00603-009-0027-3 CrossRefGoogle Scholar
  8. Frash LP, Carey JW, Lei Z, Rougier E, Ickes T, Viswanathan HS (2016) High-stress triaxial direct-shear of Utica shale and in situ X-ray microtomography with permeability measurement. J Geophys Res 121:5493–5508.  https://doi.org/10.1002/2016JB012850 CrossRefGoogle Scholar
  9. Frash LP, Carey JW, Ickes T, Viswanathan HS (2017) Caprock integrity susceptibility to permeable fracture creation. Int J Greenh Gas Control 64:60–72.  https://doi.org/10.1016/j.ijggc.2017.06.010 CrossRefGoogle Scholar
  10. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  11. Gonçalves Da Silva B, Einstein HH (2013) Modeling of crack initiation, propagation and coalescence in rocks. Int J Fract 182:167–186.  https://doi.org/10.1007/s10704-013-9866-8 CrossRefGoogle Scholar
  12. Gudmundsson A (2011) Rock fractures in geological processes. Cambridge University Press, New York.  https://doi.org/10.1017/CBO9780511975684 CrossRefGoogle Scholar
  13. Haeri H, Shahriar K, Marji MF, Moarefvand P (2014) Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock Mech Min Sci 67:20–28.  https://doi.org/10.1016/j.ijrmms.2014.01.008 CrossRefGoogle Scholar
  14. Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6:287–300.  https://doi.org/10.1016/j.jrmge.2014.06.001 CrossRefGoogle Scholar
  15. Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90:3105.  https://doi.org/10.1029/JB090iB04p03105 CrossRefGoogle Scholar
  16. Jeong SS, Nakamura K, Yoshioka S, Obara Y, Kataoka M (2017) Fracture toughness of granite measured using micro to macro scale specimens. Procedia Eng 191:761–767CrossRefGoogle Scholar
  17. Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39:409–427CrossRefGoogle Scholar
  18. Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999.  https://doi.org/10.1016/j.ijsolstr.2010.12.001 CrossRefGoogle Scholar
  19. Lisjak A, Grasselli G (2010) Rock impact modelling using FEM/DEM. In: Proceedings of the 5th international conference on discrete element method, London, EnglandGoogle Scholar
  20. Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6:301–314.  https://doi.org/10.1016/j.jrmge.2013.12.007 CrossRefGoogle Scholar
  21. Ma GW, Wang QS, Yi XW, Wang XJ (2014) A modified SPH method for dynamic failure simulation of heterogeneous material. Math Probl Eng.  https://doi.org/10.1155/2014/808359 Google Scholar
  22. Munjiza A (2004) The combined finite-discrete element method. Wiley, Chichester.  https://doi.org/10.1002/0470020180 CrossRefGoogle Scholar
  23. Munjiza A, Andrews KRF, White JK (1999) Combined single and smeared crack model in combined finite-discrete element analysis. Int J Numer Methods Eng 44:41–57CrossRefGoogle Scholar
  24. Munjiza A, Knight EE, Rougier E (2011) Computational mechanics of discontinua. Wiley, Chichester.  https://doi.org/10.1002/9781119971160 CrossRefGoogle Scholar
  25. Munjiza A, Rougier E, Knight EE (2015) Large strain finite element method: a practical course. Wiley, ChichesterGoogle Scholar
  26. Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46:819–829.  https://doi.org/10.1016/j.ijrmms.2009.02.006 CrossRefGoogle Scholar
  27. Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77:2727–2748.  https://doi.org/10.1016/j.engfracmech.2010.06.027 CrossRefGoogle Scholar
  28. Paterson MS, Wong T (2005) Experimental rock deformation—the brittle field. Springer, Berlin.  https://doi.org/10.1007/b137431 Google Scholar
  29. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364CrossRefGoogle Scholar
  30. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A (2014) Validation of a three-dimensional Finite-Discrete Element Method using experimental results of the Split Hopkinson pressure bar test. Int J Rock Mech Min Sci 70:101–108.  https://doi.org/10.1016/j.ijrmms.2014.03.011 CrossRefGoogle Scholar
  31. Shen B (1995) The mechanism of fracture coalescence in compression-experimental study and numerical simulation. Eng Fract Mech 51:73–85.  https://doi.org/10.1016/0013-7944(94)00201-R CrossRefGoogle Scholar
  32. Tang CA, Kou SQ (1998) Crack propagation and coalescence in brittle materials under compression. Eng Fract Mech 61:311–324.  https://doi.org/10.1016/S0013-7944(98)00067-8 CrossRefGoogle Scholar
  33. Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. Int J Rock Mech Min Sci 38:925–939.  https://doi.org/10.1016/S1365-1609(01)00065-X CrossRefGoogle Scholar
  34. Tatone BSA, Grasselli G (2015) A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations. Int J Rock Mech Min Sci 75:56–72.  https://doi.org/10.1016/j.ijrmms.2015.01.011 CrossRefGoogle Scholar
  35. Tatone B, Lisjak A, Mahabadi OK, Grasselli G, Donnelly CR (2010) Evaluation of the combined finite element-discrete element method for the assessment of gravity dam stability. In: Proceedings of the 2010 Canadian dam association conference, Niagara Falls, Ontario, Canada.  https://doi.org/10.13140/2.1.1509.7285
  36. Vásárhelyi B (2006) Review article: analysing the crack coalescence in brittle rock materials. Acta Geodaetica et Geophysica Hungarica 41:181–198.  https://doi.org/10.1556/AGeod.41.2006.2.4 CrossRefGoogle Scholar
  37. Vásárhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33:119–139.  https://doi.org/10.1007/s006030050038 CrossRefGoogle Scholar
  38. Wong NY (2008) Crack coalescence in molded gypsum and Carrara marble. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  39. Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35:147–164.  https://doi.org/10.1016/S0148-9062(97)00303-3 CrossRefGoogle Scholar
  40. Wong LNY, Einstein HH (2009) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511.  https://doi.org/10.1007/s00603-008-0002-4 CrossRefGoogle Scholar
  41. Yang SQ, Yang DS, Jing HW, Li YH, Wang SY (2012) An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng 45:563–582.  https://doi.org/10.1007/s00603-011-0206-x CrossRefGoogle Scholar
  42. Yin P, Wong RHC, Chau KT (2014) Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci 68:66–84.  https://doi.org/10.1016/j.ijrmms.2014.02.011 CrossRefGoogle Scholar
  43. Zhang X-P, Wong LNY (2013) Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng 46:1001–1021.  https://doi.org/10.1007/s00603-012-0323-1 CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Geophysics GroupLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Earth Systems Observations GroupLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Computational Earth Science GroupLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Faculty of Civil Engineering, Architecture and Geodesy (FGAG)University of SplitSplitCroatia

Personalised recommendations