Determination of Multiple Thermo-Hydro-Mechanical Rock Properties in a Single Transient Experiment: Application to Shales

  • Philipp BraunEmail author
  • Siavash Ghabezloo
  • Pierre Delage
  • Jean Sulem
  • Nathalie Conil
Original Paper


The experimental determination of the thermo-poro-elastic parameters of low-permeability geomaterials is difficult because particular care has to be taken with respect to the homogeneity of the pore pressure field during the tests. A new transient step loading procedure is presented for isotropic rock tests in drained and undrained conditions, and under thermal and mechanical loading. Two different proposed protocols allow to measure various drained and undrained parameters in one single test. The observed specimen deformations are analysed based on analytical solutions for the pore pressure diffusion (Braun et al. in Rock Mech Rock Eng 51:1361–1378, 2018), which enables to back calculate the material permeability. This provides more information in less time, compared to conventional monotonic loading experiments. A demonstration is given on the Callovo–Oxfordian claystone.


Claystone Thermo-poro-elasticity Transient method Permeability 



  1. Andra (2005) Dossier 2005 Argile: evaluation of the feasibility of a geological repository in an argillaceous formation. Accessed 4 Jan 2019
  2. Belmokhtar M, Delage P, Ghabezloo S, Tang A-M, Menaceur H, Conil N (2017a) Poroelasticity of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 50:871–889CrossRefGoogle Scholar
  3. Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017b) Thermal volume changes and creep in the Callovo–Oxfordian claystone. Rock Mech Rock Eng 50:2297–2309CrossRefGoogle Scholar
  4. Belmokhtar M, Delage P, Ghabezloo S, Conil N (2018) Drained triaxial tests in low-permeability shales: application to the Callovo-Oxfordian claystone. Rock Mech Rock Eng 51:1979–1993CrossRefGoogle Scholar
  5. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601Google Scholar
  6. Bishop AW (1976) The influence of system compressibility on the observed pore-pressure response to an undrained change in stress in saturated rock. Géotechnique 26:371–375CrossRefGoogle Scholar
  7. Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2018) Theoretical analysis of pore pressure diffusion in some basic rock mechanics experiments. Rock Mech Rock Eng 51:1361–1378CrossRefGoogle Scholar
  8. Cheng AH-D (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Min Sci 34:199–205CrossRefGoogle Scholar
  9. Cheng AH-D (2016) Poroelasticity. Springer International Publishing, ChamCrossRefGoogle Scholar
  10. Chiarelli AS (2000) Étude expérimentale et modélisation du comportement mécanique de l’argilite de l’Est, Influence de la profondeur et de la teneur en eau. Ph.D. thesis, Université Lille IGoogle Scholar
  11. Conil N, Talandier J, Djizanne H, de La Vaissière R, Righini-Waz C, Auvray C, Morlot C, Armand G (2018) How rock samples can be representative of in situ condition: a case study of Callovo–Oxfordian claystones. J Rock Mech Geotech Eng 10:613–623CrossRefGoogle Scholar
  12. Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth 32:667–680CrossRefGoogle Scholar
  13. Enssle CP, Cruchaudet M, Croisé J, Brommundt J (2011) Determination of the permeability of the Callovo–Oxfordian clay at the metre to decametre scale. Phys Chem Earth 36:1669–1678CrossRefGoogle Scholar
  14. Escoffier S (2002) Caractérisation expérimentale du comportement hydroméchanique des argilites de Meuse/Haute-Marne. Ph.D. thesis, Institut national polytechnique de LorraineGoogle Scholar
  15. Escoffier S, Homand F, Giraud A, Hoteit N, Su K (2005) Under stress permeability determination of the Meuse/Haute-Marne mudstone. Eng Geol 81:329–340CrossRefGoogle Scholar
  16. Ewy RT, Daniels EJ, Stankovich RJ (2001) Behavior of a reactive shale from 12000 feet depth. In: DC rocks 2001, the 38th US symposium on rock mechanics (USRMS), 7–10 July, Washington, DCGoogle Scholar
  17. Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Géotechnique 57:207–228CrossRefGoogle Scholar
  18. Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42:1–24CrossRefGoogle Scholar
  19. Ghabezloo S, Sulem J (2010) Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters. Int J Rock Mech Min Sci 47:60–68CrossRefGoogle Scholar
  20. Ghabezloo S, Sulem J, Guédon S, Martineau F, Saint-Marc J (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cem Concr Res 38:1424–1437CrossRefGoogle Scholar
  21. Ghabezloo S, Sulem J, Saint-Marc J (2009a) Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test. Int J Rock Mech Min Sci 46:761–768CrossRefGoogle Scholar
  22. Ghabezloo S, Sulem J, Saint-Marc J (2009b) The effect of undrained heating on a fluid-saturated hardened cement paste. Cem Concr Res 39:54–64CrossRefGoogle Scholar
  23. Giger SB, Ewy RT, Favero V, Stankovic R, Keller LM (2018) Consolidated-undrained triaxial testing of Opalinus Clay: results and method validation. Geomech Energy Environ 14:16–28CrossRefGoogle Scholar
  24. Guayacán-Carrillo L-M, Ghabezloo S, Sulem J, Seyedi DM, Armand G (2017) Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground. Int J Rock Mech Min Sci 97:1–14CrossRefGoogle Scholar
  25. Harrington JF, Cuss RJ, Talandier J (2017) Gas transport properties through intact and fractured Callovo–Oxfordian mudstones. Geol Soc Lond Spec Publ 454:131–154CrossRefGoogle Scholar
  26. Hart DJ, Wang HF (1995) Laboratory measurement of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. J Geophys Res 100:741–751CrossRefGoogle Scholar
  27. Hart DJ, Wang HF (2001) A single test method for determination of poroelastic constants and flow parameters in rocks with low hydraulic conductivities. Int J Rock Mech Min Sci 38:577–583CrossRefGoogle Scholar
  28. Hoffmann K (1989) An introduction to measurements using strain gages. Hottinger Baldwin, DarmstadtGoogle Scholar
  29. Menaceur H, Delage P, Tang A, Conil N (2015) The thermo-mechanical behaviour of the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 78:290–303CrossRefGoogle Scholar
  30. Menaceur H, Delage P, Tang AM, Conil N (2016) On the thermo-hydro-mechanical behaviour of a sheared Callovo–Oxfordian claystone sample with respect to the EDZ behaviour. Rock Mech Rock Eng 49:1875–1888CrossRefGoogle Scholar
  31. Menke W (1989) Geophysical data analysis: discrete inverse theory. Academic Press Limited, LondonGoogle Scholar
  32. Mohajerani M, Delage P, Monfared M, Tang A-M, Sulem J, Gatmiri B (2011) Oedometric compression and swelling behaviour of the Callovo–Oxfordian argillite. Int J Rock Mech Min Sci 48:606–615CrossRefGoogle Scholar
  33. Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2012) A laboratory investigation of thermally induced pore pressures in the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 52:112–121CrossRefGoogle Scholar
  34. Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2014) The thermal volume changes of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 47:131–142CrossRefGoogle Scholar
  35. Seyedi D, Armand G, Conil N, Vitel M, Vu M-N (2017) On the thermo-hydro-mechanical pressurization in Callovo–Oxfordian claystone under thermal loading. In: Vandamme M, Dangla P, Pereira J-M, Ghabezloo S (eds) Poromechanics VI. ASCE, pp 754–761Google Scholar
  36. Tang A-M, Cui Y-J, Barnel N (2008) Thermo-mechanical behaviour of a compacted swelling clay. Géotechnique 58:45–54CrossRefGoogle Scholar
  37. Vinsot A, Delay J, de La Vaissière R, Cruchaudet M (2011) Pumping tests in a low permeability rock: results and interpretation of a four-year long monitoring of water production flow rates in the Callovo–Oxfordian argillaceous rock. Phys Chem Earth 36:1679–1687CrossRefGoogle Scholar
  38. Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878CrossRefGoogle Scholar
  39. Wissa AEZ (1969) Pore pressure measurement in saturated stiff soils. J Soil Mech Found Div 95:1063–1073Google Scholar
  40. Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AndraChâtenay-MalabryFrance
  2. 2.Laboratoire Navier/CERMESÉcole des Ponts ParisTech, IFSTTAR, CNRS, UMR 8205Champs-sur-MarneFrance
  3. 3.Andra, Meuse/Haute-Marne Underground Research LaboratoryBureFrance

Personalised recommendations