Advertisement

Rock Mechanics and Rock Engineering

, Volume 51, Issue 10, pp 3265–3279 | Cite as

Evaluating Micro-Seismic Events Triggered by Reservoir Operations at the Geothermal Site of Groß Schönebeck (Germany)

  • Guido Blöcher
  • Mauro Cacace
  • Antoine B. Jacquey
  • Arno Zang
  • Oliver Heidbach
  • Hannes Hofmann
  • Christian Kluge
  • Günter Zimmermann
Original Paper

Abstract

This study aims at evaluating the spatial and temporal distribution of 26 micro-seismic events which were triggered by hydraulic stimulation at the geothermal site of Groß Schönebeck (Germany). For this purpose, the alteration of the in-situ stress state and the related change of slip tendency for existing fault zones due to stimulation treatments and reservoir operations is numerical simulated. Changes in slip tendency can potentially lead to reactivation of fault zones, the related movement can lead to the occurrence of seismic events. In the current numerical study, results obtained based on the thermal–hydraulic–mechanical coupled simulation are compared to field observations. In particular, the study focuses on describing the fault reactivation potential: (1) under in-situ stress conditions; (2) during a waterfrac stimulation treatment; and (3) during a projected 30 years production and injection period at the in-situ geothermal test-site Groß Schönebeck. The in-situ stress state indicates no potential for fault reactivation. During a waterfrac stimulation treatment, micro-seismic events were recorded. Our current evaluation shows an increase of slip tendency during the treatment above the failure level in the direct vicinity of the micro-seismic events. During the projected production and injection period, despite increased thermal stress, the values for slip tendency are below the threshold for fault reactivation. Based on these results, and to prove the applied method to evaluate the observed micro-seismic events, a final discussion is opened. This includes the in-situ stress state, the role of pre-existing fault zones, the adopted criterion for fault reactivation, and a 3D rock failure criterion based on true triaxial measurements.

Keywords

Fault reactivation Enhanced Geothermal Systems (EGS) Induced seismicity Thermal–Hydraulic–Mechanical (THM) 

Nomenclature

Abbreviations

BHP

Bottom Hole Pressure

CCS

Carbon Capture and Storage

EGS

Enhanced Geothermal System

EU

European Union

GEISER

Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs

KTB

Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland

ST

Slip Tendency

TCDP

Taiwan Chelungpu-fault Drilling Project

THM

Thermal–Hydraulic–Mechanical

TVDSS

True Vertical Depth SubSea

UTM

Universal Transverse Mercator coordinate system

List of Roman Symbols

A

Material constant

B

Material constant

\(c_\text {f}\)

Fluid heat capacity

\(K_\text {f}\)

Fluid modulus

\(K_\text {s}\)

Solid modulus

\(M_\text {b}\)

Biot modulus

\(n_1, n_2, n_3\)

Components of the normal unit vector

\(p_\text {f}\)

Reservoir fluid pressure

\(S_0\)

Cohesion

\(S_{\text {Hmax}}\)

Maximum horizontal stress

\(S_{\text {hmin}}\)

Minimum horizontal stress

\(S_{\text {V}}\)

Vertical stress

T

Temperature

t

Time

\(\varvec{g}\)

Gravitational acceleration vector

\(\varvec{k}\)

Permeability tensor

\(\varvec{q_\text {D}}\)

Darcy velocity vector

\(\varvec{u}\)

Displacement vector

List of Greek Symbols

\(\alpha\)

Biot’s poro-elastic coefficient

\(\beta _\text {b}\)

Bulk volumetric thermal expansion coefficient

\(\varvec{\epsilon }\)

Strain tensor

\(\varvec{\sigma {}}^{\prime }\)

Effective stress tensor

\(\lambda _\text {b}\)

Bulk thermal conductivity

\(\mu _\text {f}\)

Fluid viscosity

\(\mu _\text {s}\)

Coefficient of friction

\(\phi\)

Porosity

\(\rho _\text {b}\)

Bulk density

\(\rho _\text {f}\)

Fluid density

\(\sigma ^{\prime }_{\text {m}}\)

Mean effective stress acting on the plane of failure

\(\sigma _1, \sigma _2, \sigma _3\)

Principle stresses

\(\sigma _\text {n}\)

Normal stress

\(\sigma {}'_\text {n}\)

Effective normal stress

\(\tau\)

Shear stress

\(\tau ^{\prime }_{\text {oct}}\)

Octahedral shear stress

\({\left( \rho {}c\right) }_{\text {b}}\)

Bulk specific heat

List of other Symbols

\(\nabla\)

Nabla operator

\(\varvec{\mathbb {C}}\)

Rank-four elastic stiffness tensor

\(\boldsymbol{\mathbb {1}}\)

Rank-two identity tensor

Notes

References

  1. Baisch S, Weidler R, Voros R, Wyborn D, de Graaf L (2006) Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bull Seismol Soc Am 96(6):2242–2256.  https://doi.org/10.1785/0120050255 CrossRefGoogle Scholar
  2. Baisch S, Voros R, Weidler R, Wyborn D (2009) Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia. Bull Seismol Soc Am 99(1):148–158.  https://doi.org/10.1785/0120080055 CrossRefGoogle Scholar
  3. Baisch S, Voros R, Rothert E, Stang H, Jung R, Schellschmidt R (2010) A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts. Int J Rock Mech Min Sci 47(3):405–413.  https://doi.org/10.1016/j.ijrmms.2009.10.001 CrossRefGoogle Scholar
  4. Bell JS (1996) In situ stresses in sedimentary rocks (Part 2): applications of stress measurements. Geosci Can 23:135–153Google Scholar
  5. Blöcher G, Zimmermann G, Milsch H (2009) Impact of poroelastic response of sandstones on geothermal power production. Pure Appl Geophys 166(5–7):1107–1123.  https://doi.org/10.1007/s00024-009-0475-4 CrossRefGoogle Scholar
  6. Blöcher MG, Zimmermann G, Moeck I, Brandt W, Hassanzadegan A, Magri F (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10(3):406–421.  https://doi.org/10.1111/j.1468-8123.2010.00284.x CrossRefGoogle Scholar
  7. Blöcher G, Cacace M, Reinsch T, Watanabe N (2015) Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin. Comput Geosci 82:120–129.  https://doi.org/10.1016/j.cageo.2015.06.005 CrossRefGoogle Scholar
  8. Blöcher G, Reinsch T, Henninges J, Milsch H, Regenspurg S, Kummerow J, Francke H, Kranz S, Saadat A, Zimmermann G, Huenges E (2016) Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics 63:27–43.  https://doi.org/10.1016/j.geothermics.2015.07.008 (enhanced Geothermal Systems: State of the Art) CrossRefGoogle Scholar
  9. Byerlee J (1978) Friction of rocks. Pure Appl Geophys PAGEOPH 116(4–5):615–626.  https://doi.org/10.1007/BF00876528 CrossRefGoogle Scholar
  10. Cacace M, Jacquey AB (2017) Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth 8(5):921–941.  https://doi.org/10.5194/se-8-921-2017 CrossRefGoogle Scholar
  11. Calò M, Dorbath C, Frogneux M (2014) Injection tests at the EGS reservoir of Soultz-sous-Forêts. Seismic response of the GPK4 stimulations. Geothermics 52:50–58.  https://doi.org/10.1016/j.geothermics.2013.10.007 CrossRefGoogle Scholar
  12. Chang C, Haimson B (2012) A failure criterion for rocks based on true triaxial testing. Rock Mech Rock Eng 45(6):1007–1010.  https://doi.org/10.1007/s00603-012-0280-8 CrossRefGoogle Scholar
  13. da Fontoura SAB (2012) Lade and modified lade 3D rock strength criteria. Rock Mech Rock Eng 45(6):1001–1006.  https://doi.org/10.1007/s00603-012-0279-1 CrossRefGoogle Scholar
  14. Deichmann N, Giardini D (2009) Earthquakes induced by the stimulation of an enhanced geothermal system below basel (Switzerland). Seismol Res Lett 80(5):784–798.  https://doi.org/10.1785/gssrl.80.5.784 CrossRefGoogle Scholar
  15. Deichmann N, Kraft T, Evans KF (2014) Identification of faults activated during the stimulation of the basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics 52:84–97.  https://doi.org/10.1016/j.geothermics.2014.04.001 CrossRefGoogle Scholar
  16. Dorbath L, Cuenot N, Genter A, Frogneux M (2009) Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections. Geophys J Int 177(2):653–675.  https://doi.org/10.1111/j.1365-246X.2009.04030.x CrossRefGoogle Scholar
  17. Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1225,942–1225,942.  https://doi.org/10.1126/science.1225942 CrossRefGoogle Scholar
  18. Engelder T (1993) Stress regimes in the lithosphere. Princeton University Press, PrincetonGoogle Scholar
  19. Fehler M, Jupe A, Asanuma H (2001) More than cloud: new techniques for characterizing reservoir structure using induced seismicity. Lead Edge 20(3):324–328.  https://doi.org/10.1190/1.1438942 CrossRefGoogle Scholar
  20. Fuchs K, Müller B (2001) World stress map of the earth: a key to tectonic processes and technological applications. Naturwissenschaften 88:357–371CrossRefGoogle Scholar
  21. Gaston D, Newman C, Hansen G, Lebrun-Grandié D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778.  https://doi.org/10.1016/j.nucengdes.2009.05.021 CrossRefGoogle Scholar
  22. Gaucher E, Schoenball M, Heidbach O, Zang A, Fokker PA, van Wees JD, Kohl T (2015) Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renew Sustain Energy Rev 52:1473–1490.  https://doi.org/10.1016/j.rser.2015.08.026 CrossRefGoogle Scholar
  23. Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849.  https://doi.org/10.1038/462848a CrossRefGoogle Scholar
  24. Gupta H (2011) Encyclopedia of solid earth geophysics. Springer, BerlinCrossRefGoogle Scholar
  25. Hakimhashemi AH, Schoenball M, Heidbach O, Zang A, Grünthal G (2014a) Forward modelling of seismicity rate changes in georeservoirs with a hybrid geomechanical–statistical prototype model. Geothermics 52:185–194.  https://doi.org/10.1016/j.geothermics.2014.01.001 CrossRefGoogle Scholar
  26. Hakimhashemi AH, Yoon JS, Heidbach O, Zang A, Grünthal G (2014b) Forward induced seismic hazard assessment: application to a synthetic seismicity catalogue from hydraulic stimulation modelling. J Seismol 18(3):671–680.  https://doi.org/10.1007/s10950-014-9439-y CrossRefGoogle Scholar
  27. Häring MO, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37(5):469–495.  https://doi.org/10.1016/j.geothermics.2008.06.002 CrossRefGoogle Scholar
  28. Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The denver earthquakes. Science 161(3848):1301–1310.  https://doi.org/10.1126/science.161.3848.1301 CrossRefGoogle Scholar
  29. Jacquey AB, Cacace M, Blöcher G, Scheck-Wenderoth M (2015) Numerical investigation of thermoelastic effects on fault slip tendency during injection and production of geothermal fluids. Energy Procedia 76:311–320.  https://doi.org/10.1016/j.egypro.2015.07.868 CrossRefGoogle Scholar
  30. Jacquey AB, Cacace M, Blöcher G, Watanabe N, Huenges E, Scheck-Wenderoth M (2016) Thermo-poroelastic numerical modelling for enhanced geothermal system performance: case study of the Groß Schönebeck reservoir. Tectonophysics 684:119–130.  https://doi.org/10.1016/j.tecto.2015.12.020 CrossRefGoogle Scholar
  31. Jaeger J, Cook NG, Zimmerman R (2007) Fundamentals of rock mechanics. Wiley-Blackwell, OxfordGoogle Scholar
  32. Jeanne P, Rutqvist J, Dobson PF, Garcia J, Walters M, Hartline C, Borgia A (2015) Geomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir. J Geophys Res Solid Earth 120(12):8422–8438.  https://doi.org/10.1002/2015jb012414 CrossRefGoogle Scholar
  33. Jung R (2013) EGS–goodbye or back to the future 95. In: Jeffrey R (ed) Effective and sustainable hydraulic fracturing, vol 5. InTech, Croatia, pp 95–121.  https://doi.org/10.5772/56458 CrossRefGoogle Scholar
  34. Kwiatek G, Bohnhoff M, Dresen G, Schulze A, Schulte T, Zimmermann G, Huenges E (2010) Microseismicity induced during fluid-injection: a case study from the geothermal site at Groß Schönebeck and North German Basin. Acta Geophys 58:995–1020.  https://doi.org/10.2478/s11600-010-0032-7 CrossRefGoogle Scholar
  35. Kwiatek G, Bulut F, Bohnhoff M, Dresen G (2014) High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Geothermics 52:98–111.  https://doi.org/10.1016/j.geothermics.2013.09.008 CrossRefGoogle Scholar
  36. Labuz JF, Zang A (2012) Mohr–Coulomb failure criterion. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Berlin, pp 227–231.  https://doi.org/10.1007/978-3-319-07713-0-19 CrossRefGoogle Scholar
  37. Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40(2):151–171.  https://doi.org/10.1016/S1365-1609(02)00138-7 CrossRefGoogle Scholar
  38. Mendecki A (2012) Seismic monitoring in mines. Springer, The NetherlandsGoogle Scholar
  39. Moeck I, Kwiatek G, Zimmermann G (2009) Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J Struct Geol 31(10):1174–1182.  https://doi.org/10.1016/j.jsg.2009.06.012 CrossRefGoogle Scholar
  40. Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275.  https://doi.org/10.1130/0091-7613(1996)024%3c0275:STAAFR%3e2.3.CO;2 CrossRefGoogle Scholar
  41. Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76(26):6414–6419.  https://doi.org/10.1029/JB076i026p06414 CrossRefGoogle Scholar
  42. Obermann A, Kraft T, Larose E, Wiemer S (2015) Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J Geophys Res Solid Earth 120(6):4301–4316.  https://doi.org/10.1002/2014jb011817 CrossRefGoogle Scholar
  43. Priest S (2012) Three-dimensional failure criteria based on the Hoek–Brown criterion. Rock Mech Rock Eng 45(6):989–993.  https://doi.org/10.1007/s00603-012-0277-3 CrossRefGoogle Scholar
  44. Suckale J (2009) Induced seismicity in hydrocarbon fields. Advances in geophysics. Elsevier, Oxford, pp 55–106.  https://doi.org/10.1016/s0065-2687(09)05107-3 CrossRefGoogle Scholar
  45. Talwani P, Acree S (1985) Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl Geophys PAGEOPH 122(6):947–965.  https://doi.org/10.1007/BF00876395 CrossRefGoogle Scholar
  46. Trifu CIE (2010) Monitoring induced seismicity, vol Pageoph topical volumes. Birkhäuser, BaselGoogle Scholar
  47. Zang A, Stephansson O (2010) Stress field of the earth’s crust. Springer, BerlinCrossRefGoogle Scholar
  48. Zang A, Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs—an overview. Geothermics 52:6–21.  https://doi.org/10.1016/j.geothermics.2014.06.005 CrossRefGoogle Scholar
  49. Zimmermann G, Moeck I, Blöcher G (2010) Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS) —conceptual design and experimental results. Geothermics 39(1):59–69.  https://doi.org/10.1016/j.geothermics.2009.10.003 CrossRefGoogle Scholar
  50. Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511586477 CrossRefGoogle Scholar
  51. Zoback MD (2010) Reservoir geomechanics, 2nd edn. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511586477 CrossRefGoogle Scholar
  52. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci 109(26):10,164–10,168.  https://doi.org/10.1073/pnas.1202473109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Guido Blöcher
    • 1
  • Mauro Cacace
    • 1
  • Antoine B. Jacquey
    • 1
  • Arno Zang
    • 1
  • Oliver Heidbach
    • 1
  • Hannes Hofmann
    • 1
  • Christian Kluge
    • 1
  • Günter Zimmermann
    • 1
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations