Advertisement

Rock Mechanics and Rock Engineering

, Volume 51, Issue 10, pp 3005–3028 | Cite as

Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds

  • Adrián Riquelme
  • Roberto Tomás
  • Miguel Cano
  • José Luis Pastor
  • Antonio Abellán
Original Paper

Abstract

Finding new ways to quantify discontinuity persistence values in rock masses in an automatic or semi-automatic manner is a considerable challenge, as an alternative to the use of traditional methods based on measuring patches or traces with tapes. Remote sensing techniques potentially provide new ways of analysing visible data from the rock mass. This work presents a methodology for the automatic mapping of discontinuity persistence on rock masses, using 3D point clouds. The method proposed herein starts by clustering points that belong to patches of a given discontinuity. Coplanar clusters are then merged into a single group of points. Persistence is measured in the directions of the dip and strike for each coplanar set of points, resulting in the extraction of the length of the maximum chord and the area of the convex hull. The proposed approach is implemented in a graphic interface with open source software. Three case studies are utilized to illustrate the methodology: (1) small-scale laboratory setup consisting of a regular distribution of cubes with similar dimensions, (2) more complex geometry consisting of a real rock mass surface in an excavated cavern and (3) slope with persistent sub-vertical discontinuities. Results presented good agreement with field measurements, validating the methodology. Complexities and difficulties related to the method (e.g., natural discontinuity waviness) are reported and discussed. An assessment on the applicability of the method to the 3D point cloud is also presented. Utilization of remote sensing data for a more objective characterization of the persistence of planar discontinuities affecting rock masses is highlighted herein.

Keywords

Persistence Rock mass Characterization 3D point clouds Photogrammetry LiDAR Automatic extraction 

Abbreviations

DBSCAN

Density based scan

DS

Discontinuity set

DSE

Discontinuity set extractor

EIFOV

Effective instantaneous field of view

GPR

Ground penetrating radar

HDS

High definition surveying

ISRM

International Society for Rock Mechanics and Rock Engineering

JCS

Joint (wall) compressive strength

JRC

Joint (wall) Roughness coefficient

KDE

Kernel density estimation

LiDAR

Light detection and ranging

RMSE

Root-mean-square error

SfM

Structure from Motion

TLS

Terrestrial laser scanner

List of symbols

ai

Area of the ith discontinuity in a 3D region of volume V

aRi

Area of the discontinuity i within region R

A

First parameter of the general form of the equation of a plane

AR

Total area of the region

B

Second parameter of the general form of the equation of a plane

Ch

Convex hull

Cl

Cluster

D

Fourth parameter of the general form of the equation of a plane

I

Intensity of discontinuities within a rock mass

J

Discontinuity

k

Numerical parameter that controls the sensitivity of the merging process of coplanar clusters

K

Discontinuity persistence

m

Mean

n

Number of data

O

Origin of a Cartesian coordinate system

P

Point

R

Region of a plane

s

Normal spacing

V

Volume of a region

x

First coordinate of a point in a Cartesian coordinate system

X

Set of points

y

Second coordinate of a point in a Cartesian coordinate system

z

Third coordinate of a point in a Cartesian coordinate system

Greek letters

α

Dip direction angle of a discontinuity set

β

Dip angle of a discontinuity set

λ

Mean trace termination or persistence frequency

µ

Mean of point-plane distances

σ

Standard deviation of the distances point-plane distances

Notes

Acknowledgements

This work was partially funded by the University of Alicante (vigrob-157 Project, GRE14-04 Project and GRE15-19 Project), the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI) and the European Funds for Regional Development (FEDER) (projects TEC2017-85244-C2-1-P and TIN2014-55413-C2-2-P) and the Spanish Ministry of Education, Culture and Sport (project PRX17/00439). A. Abellán would like to acknowledge the support received from the H2020 Program of the European Commission under the Marie Skłodowska-Curie Individual Fellowship [MSCA-IF-2015-705215].

References

  1. Abellán A, Derron M-H, Jaboyedoff M (2016) ‘Use of 3D point clouds in geohazards’ special issue: current challenges and future trends. Remote Sens 8:130.  https://doi.org/10.3390/rs8020130 CrossRefGoogle Scholar
  2. Alameda P (2014) Aplicación de nuevas metodologías de adquisición de datos para el análisis de estabilidad de taludes: casos de estudio en materiales foliados de la Cordillera Bética. University of Granada, SpainGoogle Scholar
  3. Assali P, Grussenmeyer P, Villemin T, Pollet N, Viguier F (2016) Solid images for geostructural mapping and key block modeling of rock discontinuities. Comput Geosci 89:21–31.  https://doi.org/10.1016/j.cageo.2016.01.002 CrossRefGoogle Scholar
  4. Baecher GB (1983) Statistical analysis of rock mass fracturing. J Int Assoc Math Geol 15:329–348.  https://doi.org/10.1007/BF01036074 CrossRefGoogle Scholar
  5. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54CrossRefGoogle Scholar
  6. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38:2916–2957.  https://doi.org/10.1214/10-AOS799 CrossRefGoogle Scholar
  7. Cano M, Tomás R (2013) Characterization of the instability mechanisms affecting slopes on carbonatic Flysch: Alicante (SE Spain), case study. Eng Geol 156:68–91.  https://doi.org/10.1016/j.enggeo.2013.01.009 CrossRefGoogle Scholar
  8. Chen N, Kemeny J, Jiang Q, Pan Z (2017) Automatic extraction of blocks from 3D point clouds of fractured rock. Comput Geosci 109:149–161.  https://doi.org/10.1016/J.CAGEO.2017.08.013 CrossRefGoogle Scholar
  9. Dershowitz WS (1985) Rock joint systems. Ph. D. Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  10. Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models. Rock Mech Rock Eng 21:21–51.  https://doi.org/10.1007/BF01019674 CrossRefGoogle Scholar
  11. Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20:227–236.  https://doi.org/10.1016/0148-9062(83)90003-7 CrossRefGoogle Scholar
  12. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (eds) Second international conference on knowledge discovery and data mining. AAAI Press, Portland, Oregon, pp 226–231Google Scholar
  13. García-Sellés D, Falivene O, Arbués P, Gratacos O, Tavani S, Muñoz JA (2011) Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Comput Geosci 37:1584–1594.  https://doi.org/10.1016/j.cageo.2011.03.007 CrossRefGoogle Scholar
  14. Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198.  https://doi.org/10.1016/j.ijrmms.2010.11.009 CrossRefGoogle Scholar
  15. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  16. Haneberg W (2007) Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds. In: Eberhardt E, Stead D, Morrison T (eds) Rock mechanics: meeting society’s challenges and demands. Taylor & Francis, Vancouver, pp 101–106CrossRefGoogle Scholar
  17. Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469.  https://doi.org/10.1007/s10064-008-0157-y CrossRefGoogle Scholar
  18. Hudson JA, Priest SD (1983) Discontinuity frequency in rock masses. Int J Rock Mech Min Sci 20:73–89.  https://doi.org/10.1016/0148-9062(83)90329-7 CrossRefGoogle Scholar
  19. Humair F, Abellán A, Carrea D, Matasci B, Epard J-L, Jaboyedoff M (2015) Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. Eur J Remote Sens 48:541–568.  https://doi.org/10.5721/EuJRS20154831 CrossRefGoogle Scholar
  20. International Society for Rock Mechanics (1978) International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368.  https://doi.org/10.1016/0148-9062(79)91476-1 CrossRefGoogle Scholar
  21. Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron M-.H, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. In: Francis T (ed) Rock mechanics: Meeting Society’s challenges and demands. Proceedings of the 1st Canada—U.S. Rock Mechanics Symposium,Vancouver, Canada, May 27–31, 2007. pp 61–68Google Scholar
  22. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-. Loye HM-H, Metzger A, Pedrazzini R A (2012) Use of LIDAR in landslide investigations: a review. Nat hazards 61:5–28.  https://doi.org/10.1007/s11069-010-9634-2 CrossRefGoogle Scholar
  23. Jordá Bordehore L, Riquelme A, Cano M, Tomás R (2017) Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. Int J Rock Mech Min Sci 97:24–32.  https://doi.org/10.1016/j.ijrmms.2017.06.004 CrossRefGoogle Scholar
  24. Khoshelham K, Altundag D, Ngan-Tillard D, Menenti M (2011) Influence of range measurement noise on roughness characterization of rock surfaces using terrestrial laser scanning. Int J Rock Mech Min Sci 48:1215–1223.  https://doi.org/10.1016/j.ijrmms.2011.09.007 CrossRefGoogle Scholar
  25. Kurz TH, Buckley SJ, Howell JA, Schneider D (2011) Integration of panoramic hyperspectral imaging with terrestrial lidar data. Photogramm Rec 26:212–228.  https://doi.org/10.1111/j.1477-9730.2011.00632.x CrossRefGoogle Scholar
  26. Lai P, Samson C, Bose P (2014) Surface roughness of rock faces through the curvature of triangulated meshes. Comput Geosci 70:229–237.  https://doi.org/10.1016/j.cageo.2014.05.010 CrossRefGoogle Scholar
  27. Lato MJ, Bevan G, Fergusson M (2012) Gigapixel imaging and photogrammetry: development of a new long range remote imaging technique. Remote Sens 4:3006–3021.  https://doi.org/10.3390/rs4103006 CrossRefGoogle Scholar
  28. Lato MJ, Kemeny J, Harrap RM, Bevan G (2013) Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Comput Geosci 50:106–114.  https://doi.org/10.1016/j.cageo.2012.06.014 CrossRefGoogle Scholar
  29. Leica (2016) Cyclone v9.1Google Scholar
  30. Leica Geosystems AG (2011) Leica ScanStation C10 data sheet. Heerbrugg, SwitzerlandGoogle Scholar
  31. Lichti DD, Jamtsho S (2006) Angular resolution of terrestrial laser scanners. Photogramm Rec 21:141–160.  https://doi.org/10.1111/j.1477-9730.2006.00367.x CrossRefGoogle Scholar
  32. Longoni L, Arosio D, Scaioni M, Papini M, Zanzi L, Roncella R, Brambilla D (2012) Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass. J Geophys Eng 9:461–472.  https://doi.org/10.1088/1742-2132/9/5/461 CrossRefGoogle Scholar
  33. Mauldon M (1994) Intersection probabilities of impersistent joints. Int J Rock Mech Min Sci 31:107–115.  https://doi.org/10.1016/0148-9062(94)92800-2 CrossRefGoogle Scholar
  34. Micheletti N, Chandler JH, Lane SN (2015) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landforms 40:473–486.  https://doi.org/10.1002/esp.3648 CrossRefGoogle Scholar
  35. Oppikofer T, Jaboyedoff M, Blikra L, Derron M-, Metzger H R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019.  https://doi.org/10.5194/nhess-9-1003-2009 CrossRefGoogle Scholar
  36. Oppikofer T, Jaboyedoff M, Pedrazzini A, Derron M-, Blikra H L (2011) Detailed DEM analysis of a rockslide scar to characterize the basal sliding surface of active rockslides. J Geophys Res Earth Surf.  https://doi.org/10.1029/2010JF001807 CrossRefGoogle Scholar
  37. Ortega OJ, Marrett RA, Laubach SE (2006) A scale-independent approach to fracture intensity and average spacing measurement. Am Assoc Pet Geol Bull 90:193–208.  https://doi.org/10.1306/08250505059 CrossRefGoogle Scholar
  38. Park HJ, West TR, Woo I (2005) Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Eng Geol 79:230–250.  https://doi.org/10.1016/j.enggeo.2005.02.001 CrossRefGoogle Scholar
  39. Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci 18:183–197.  https://doi.org/10.1016/0148-9062(81)90973-6 CrossRefGoogle Scholar
  40. Rahman Z, Slob S, Hack HRGK. (2006) Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data. In: Proceedings of 10th IAEG congress: engineering geology for tomorrow’s cities, Nottingham, United Kingdom. pp 1–12Google Scholar
  41. RIEGL (2017) RIEGL VZ-6000 3D very long range terrestrial laser scanner with online waveform processing terrestrial laser scanningGoogle Scholar
  42. Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52.  https://doi.org/10.1016/j.cageo.2014.03.014 CrossRefGoogle Scholar
  43. Riquelme A, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195.  https://doi.org/10.1016/j.enggeo.2015.06.009 CrossRefGoogle Scholar
  44. Riquelme A, Tomás R, Cano M, Abellán A, Tomás R, Abellán A (2016) Using open-source software for extracting geomechanical parameters of a rock mass from 3D point clouds: discontinuity Set Extractor and SMRTool. In: Ulusay R, Aydan Ö, Gerçek H, Hindistan M, Tuncay E (eds) Rock mechanics & rock engineering: from the past to the future. CRC Press, Taylor & Francies Group, London, pp 1091–1096CrossRefGoogle Scholar
  45. Riquelme A, Ferrer B, Mas D (2017) Use of high-quality and common commercial mirrors for scanning close-range surfaces using 3D laser scanners: a laboratory experiment. Remote Sens 9:1152.  https://doi.org/10.3390/rs9111152 CrossRefGoogle Scholar
  46. Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmentation model for rockfalls. Landslides 14:875–889.  https://doi.org/10.1007/s10346-016-0773-8 CrossRefGoogle Scholar
  47. Shang J, Hencher SR, West LJ, Handley K (2017) Forensic excavation of rock masses: a technique to investigate discontinuity persistence. Rock Mech Rock Eng 50:2911–2928.  https://doi.org/10.1007/s00603-017-1290-3 CrossRefGoogle Scholar
  48. Slob S, Turner AK, Bruining J, Hack HRGK (2010) Automated rock mass characterisation using 3-D terrestrial laser scanning. TU Delft, Delft University of Technology, DelftGoogle Scholar
  49. Sturzenegger M, Stead D (2009a) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182.  https://doi.org/10.1016/j.enggeo.2009.03.004 CrossRefGoogle Scholar
  50. Sturzenegger M, Stead D (2009b) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287CrossRefGoogle Scholar
  51. Sturzenegger M, Yan M, Stead D, Elmo D (2007) Application And Limitations of Ground-based Laser Scanning In Rock Slope Characterization. In: Eberhardt E, Stead D, Morrison T (eds) 1st Canada—U.S. Rock Mechanics Symposium. American Rock Mechanics Association, Vancouver, Canada, pp 29–36CrossRefGoogle Scholar
  52. Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111.  https://doi.org/10.1016/j.enggeo.2011.02.005 CrossRefGoogle Scholar
  53. Tatone BSA, Grasselli G (2010) A new 2D discontinuity roughness parameter and its correlation with JRC. Int J Rock Mech Min Sci 47:1391–1400.  https://doi.org/10.1016/j.ijrmms.2010.06.006 CrossRefGoogle Scholar
  54. Teledyne Optech Incorporated (2017) ILRIS-LR terrestrial laser scanner. CanadaGoogle Scholar
  55. Tuckey Z, Stead D (2016) Improvements to field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes. Eng Geol 208:136–153.  https://doi.org/10.1016/j.enggeo.2016.05.001 CrossRefGoogle Scholar
  56. Ullman S (1979) The interpretation of visual motion. Massachusetts Inst of Technology Pr, CambridgeGoogle Scholar
  57. Vaskou P (2016) Structural characterization of faults and fractures in underground works. In: Ulusay R, Aydan O, Gerçek H, Hindistan MA, Tuncay E (eds) Rock mechanics and rock engineering: from the past to the future. CRC Press, Boca Raton, pp 99–104CrossRefGoogle Scholar
  58. Vivas J, Hunt C, Stead D, Allen DM, Elmo D (2015) Characterising groundwater in rock slopes using a combined remote sensing—numerical modelling approach. In: 13th ISRM Int. Congr. Rock MechGoogle Scholar
  59. Vöge M, Lato MJ, Diederichs MS (2013) Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng Geol 164:155–162.  https://doi.org/10.1016/j.enggeo.2013.07.008 CrossRefGoogle Scholar
  60. Wang X, Zou L, Shen X, Ren Y, Qin Y (2017) A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud. Comput Geosci 99:100–106.  https://doi.org/10.1016/j.cageo.2016.11.002 CrossRefGoogle Scholar
  61. Zhang L (2006) Rock discontinuities. In: Zhang L (eds) Engineering properties of rocks, 4th edn. Elsevier, Amsterdam, pp 226–230Google Scholar
  62. Zhang L, Einstein HH (2000) Estimating the intensity of rock discontinuities. Int J Rock Mech Min Sci 37:819–837.  https://doi.org/10.1016/S1365-1609(00)00022-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of AlicanteAlicanteSpain
  2. 2.Institute of Applied Geosciences, School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations