Advertisement

Rock Mechanics and Rock Engineering

, Volume 51, Issue 9, pp 2805–2824 | Cite as

Numerical Simulations and Validation of Contact Mechanics in a Granodiorite Fracture

  • Tobias Kling
  • Daniel Vogler
  • Lars Pastewka
  • Florian Amann
  • Philipp Blum
Original Paper

Abstract

Numerous rock engineering applications require a reliable estimation of fracture permeabilities to predict fluid flow and transport processes. Since measurements of fracture properties at great depth are extremely elaborate, representative fracture geometries typically are obtained from outcrops or core drillings. Thus, physically valid numerical approaches are required to compute the actual fracture geometries under in situ stress conditions. Hence, the objective of this study is the validation of a fast Fourier transform (FFT)-based numerical approach for a circular granodiorite fracture considering stress-dependent normal closure. The numerical approach employs both purely elastic and elastic–plastic contact deformation models, which are based on high-resolution fracture scans and representative mechanical properties, which were measured in laboratory experiments. The numerical approaches are validated by comparing the simulated results with uniaxial laboratory tests. The normal stresses applied in the axial direction of the cylindrical specimen vary between 0.25 and 10 MPa. The simulations indicate the best performance for the elastic–plastic model, which fits well with experimentally derived normal closure data (root-mean-squared error = 9 µm). The validity of the elastic–plastic model is emphasized by a more realistic reproduction of aperture distributions, local stresses and contact areas along the fracture. Although there are differences in simulated closure for the elastic and elastic–plastic models, only slight differences in the resulting aperture distributions are observed. In contrast to alternative interpenetration models or analytical models such as the Barton–Bandis models and the “exponential repulsion model”, the numerical simulations reproduce heterogeneous local closure as well as low-contact areas (< 2%) even at high normal stresses (10 MPa), which coincides with findings of former experimental studies. Additionally, a relative hardness value of 0.14 for granitic rocks, which defines the general resistance to non-elastic deformation of the contacts, is introduced and successfully applied for the elastic–plastic model.

Keywords

Rock fracture Contact mechanics Elastic contact Elastic–plastic contact Normal closure Fast Fourier transform 

List of symbols

\({a_{\text{m}}}\)

Mean mechanical aperture [m]

\({a_{\text{m}}}\left( {x,y} \right)\)

Local mechanical aperture [m]

\({a_0}\left( {x,y} \right)\)

Initial local mechanical aperture (σn = 0 MPa) [m]

\({A_0}\)

Total fracture area [m2]

\({A_{\text{r}}}\)

Real contact area [m2]

\({A_r}/{A_0}\)

Relative contact area [–]

\(\beta\)

Dimensionless integration constant [–]

\(d\)

Sample diameter [m]

\({E_{{\text{exp}}}}\)

Experimentally derived Young’s modulus [Pa]

\({E_{{\text{lit}}}}\)

Young’s modulus derived from the literature [Pa]

\({E^*}\)

Effective Young’s modulus [Pa]

γ

Constant co-determining the characteristic length [–]

\(H\)

Indentation hardness [Pa]

\(H/{E^*}\)

Relative hardness [–]

\({k_{n,0}}\)

Initial fracture normal stiffness [Pa/m]

\(\nu\)

Poisson ratio [–]

\({q_{x,y}}\)

Wavevector of the surface

R2

R-squared

RMSE

Root-mean-squared error

\({s_a}\)

Standard deviation of am [m]

\({\sigma _n}\)

Normal stress [Pa]

\({\sigma _n}\left( {x,y} \right)\)

Local contact stress [Pa]

\(u\)

Average normal closure [m]

\(u\left( {x,y} \right)\)

Local normal closure [m]

\({u_{n,{\text{max}}}}\)

Maximum normal closure [m]

\({\text{UCS}}\)

Uniaxial compressive strength [Pa]

Notes

Acknowledgements

This study was mainly carried out within the framework of the Helmholtz Association of German Research Centres (HGF) portfolio project “Geoenergy” and is part of the comprised reservoir engineering cluster. LP acknowledges funding by the Deutsche Forschungsgemeinschaft (Grant PA 2023/2). Daniel Vogler gratefully acknowledges funding from the Swiss Competence Center for Energy Research-Supply of Electricity (SCCER-SoE). We thank Mark Robbins for useful discussion.

References

  1. Akarapu S, Sharp T, Robbins MO (2011) Stiffness of contacts between rough surfaces. Phys Rev Lett 106:204301.  https://doi.org/10.1103/PhysRevLett.106.204301 Google Scholar
  2. Almqvist A, Sahlin F, Larsson R, Glavatskih S (2007) On the dry elasto-plastic contact of nominally flat surfaces. Tribol Int 40:574–579.  https://doi.org/10.1016/j.triboint.2005.11.008 Google Scholar
  3. Almqvist A, Campañá C, Prodanov N, Persson BNJ (2011) Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J Mech Phys Solids 59:2355–2369.  https://doi.org/10.1016/j.jmps.2011.08.004 Google Scholar
  4. Amaral P, Cruz Fernandes J, Frisa A et al (2000) Evaluation of the workability by means of diamond tools of a series of portuguese commercial granites. In: Convegno su “Le cave di Pietre Ornamenteli. Associazone Georisorse e Ambiente, Torino (Italy), pp 323–329Google Scholar
  5. Amba-rao CL (1969) Fourier transform methods in elasticity problems and an application. J Frankl Inst 287:241–249.  https://doi.org/10.1016/0016-0032(69)90100-8 Google Scholar
  6. Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14.  https://doi.org/10.1016/j.enggeo.2005.06.006 Google Scholar
  7. Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci 20:249–268.  https://doi.org/10.1016/0148-9062(83)90595-8 Google Scholar
  8. Barbot S, Fialko Y (2010) Fourier-domain Green’s function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophys J Int 182:568–582.  https://doi.org/10.1111/j.1365-246X.2010.04655.x Google Scholar
  9. Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:.  https://doi.org/10.1016/0148-9062(85)93227-9
  10. Benz M, Rosenberg KJ, Kramer EJ, Israelachvili JN (2006) The deformation and adhesion of randomly rough and patterned surfaces. J Phys Chem B 110:11884–11893.  https://doi.org/10.1021/jp0602880 Google Scholar
  11. Berthoud P, Baumberger T (1998) Shear stiffness of a solid–solid multicontact interface. Proc R Soc Lond Math Phys Eng Sci 454:1615–1634.  https://doi.org/10.1098/rspa.1998.0223 Google Scholar
  12. Blum P, Mackay R, Riley MS, Knight JL (2005) Performance assessment of a nuclear waste repository: upscaling coupled hydro-mechanical properties for far-field transport analysis. Int J Rock Mech Min Sci 42:781–792.  https://doi.org/10.1016/j.ijrmms.2005.03.015 Google Scholar
  13. Blum P, Mackay R, Riley MS (2009) Stochastic simulations of regional scale advective transport in fractured rock masses using block upscaled hydro-mechanical rock property data. J Hydrol 369:318–325.  https://doi.org/10.1016/j.jhydrol.2009.02.009 Google Scholar
  14. Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. Fundamental mechanisms. Hydrogeol J 11:418–433.  https://doi.org/10.1007/s10040-003-0268-2 Google Scholar
  15. Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res Solid Earth 85:6248–6252.  https://doi.org/10.1029/JB085iB11p06248 Google Scholar
  16. Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res Solid Earth 92:1337–1347.  https://doi.org/10.1029/JB092iB02p01337 Google Scholar
  17. Brown SR, Scholz CH (1985) Closure of random elastic surfaces in contact. J Geophys Res Solid Earth 90:5531–5545.  https://doi.org/10.1029/JB090iB07p05531 Google Scholar
  18. Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res Solid Earth 91:4939–4948.  https://doi.org/10.1029/JB091iB05p04939 Google Scholar
  19. Campañá C, Müser MH (2006) Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys Rev B 74:075420.  https://doi.org/10.1103/PhysRevB.74.075420 Google Scholar
  20. Campañá C, Persson BNJ, Müser MH (2011) Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J Phys Condens Matter 23:085001.  https://doi.org/10.1088/0953-8984/23/8/085001 Google Scholar
  21. Candela T, Renard F, Bouchon M et al (2009) Characterization of fault roughness at various scales: implications of three-dimensional high resolution topography measurements. Pure Appl Geophys 166:1817–1851.  https://doi.org/10.1007/s00024-009-0521-2 Google Scholar
  22. Candela T, Renard F, Klinger Y et al (2012) Roughness of fault surfaces over nine decades of length scales. J Geophys Res Solid Earth 117:30.  https://doi.org/10.1029/2011jb009041 Google Scholar
  23. Ceryan Ş (2008) New chemical weathering indices for estimating the mechanical properties of rocks: a case study from the Kürtün Granodiorite, NE Turkey. Turk J Earth Sci 17:187–207Google Scholar
  24. Ceryan S (2015) New weathering indices for evaluating durability and weathering characterization of crystalline rock material: a case study from NE Turkey. J Afr Earth Sci 103:54–64.  https://doi.org/10.1016/j.jafrearsci.2014.12.005 Google Scholar
  25. Chen C-Y, Horne RN (2006) Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour Res 42:W03430/1–W03430/17.  https://doi.org/10.1029/2004wr003837 Google Scholar
  26. Ciavarella M, Greenwood JA, Paggi M (2008) Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265:729–734.  https://doi.org/10.1016/j.wear.2008.01.019 Google Scholar
  27. Co C, Horne R (2015) Artificial rough fracture generation using sequential gaussian simulation (SGSIM): correlating spatial aperture characteristics to flow channeling behavior. In: 17th Conference of the International Association for Mathematical Geosciences (IAMG). Freiberg (Germany), p 10Google Scholar
  28. Dapp WB, Lücke A, Persson BNJ, Müser MH (2012) Self-affine elastic contacts: percolation and leakage. Phys Rev Lett 108:244301.  https://doi.org/10.1103/PhysRevLett.108.244301 Google Scholar
  29. Develi K, Babadagli T (2015) Experimental and visual analysis of single-phase flow through rough fracture replicas. Int J Rock Mech Min Sci 73:139–155.  https://doi.org/10.1016/j.ijrmms.2014.11.002 Google Scholar
  30. Dieterich JH, Kilgore BD (1996) Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256:219–239.  https://doi.org/10.1016/0040-1951(95)00165-4 Google Scholar
  31. Evans B (1984) The effect of temperature and impurity content on indentation hardness of quartz. J Geophys Res Solid Earth 89:4213–4222.  https://doi.org/10.1029/JB089iB06p04213 Google Scholar
  32. Evans KF, Kohl T, Hopkirk R, Rybach L (1992) Modeling of energy production from hot dry rock systems: Project 359—final report. Swiss National Energy Research Fund (NEFF), Zurich (Switzerland)Google Scholar
  33. Fischer C, Luttge A (2017) Beyond the conventional understanding of water–rock reactivity. Earth Planet Sci Lett 457:100–105.  https://doi.org/10.1016/j.epsl.2016.10.019 Google Scholar
  34. Garcia N, Stoll E (1984) Monte Carlo calculation for electromagnetic-wave scattering from random rough surfaces. Phys Rev Lett 52:1798–1801.  https://doi.org/10.1103/PhysRevLett.52.1798 Google Scholar
  35. Gentier S, Hopkins D, Riss J (2013) Role of fracture geometry in the evolution of flow paths under stress. Dynamics of fluids in fractured rock. American Geophysical Union, pp 169–184Google Scholar
  36. Goodman RE (1976) Methods of geological engineering in discontinuous rocks. West Publishing Company, New York, NYGoogle Scholar
  37. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond Math Phys Eng Sci 295:300–319.  https://doi.org/10.1098/rspa.1966.0242 Google Scholar
  38. Hansen A, Schmittbuhl J, Batrouni GG, de Oliveira FA (2000) Normal stress distribution of rough surfaces in contact. Geophys Res Lett 27:3639–3642.  https://doi.org/10.1029/2000gl011757 Google Scholar
  39. Heidbach O, Tingay M, Barth A et al (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482:3–15.  https://doi.org/10.1016/j.tecto.2009.07.023 Google Scholar
  40. Hockney RW (1970) The potential calculation and some applications. In: Methods in computational physics—advances in research and applications. Academic Press, New York, pp 135–211Google Scholar
  41. Hopkins DL (2000) The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults. Int J Rock Mech Min Sci 37:175–202.  https://doi.org/10.1016/S1365-1609(99)00100-8 Google Scholar
  42. Hopkins DL, Cook NG, Myer LR (1987) Fracture stiffness and aperture as a function of applied stress and contact geometry. American Rock Mechanics Association, pp 673–680Google Scholar
  43. Huo D (2015) Measuring fracture aperture and water saturation distributions using computed tomography and its application to modeling geomechanical impact on fluid flow in fractures. Dissertation, Stanford UniversityGoogle Scholar
  44. Huo D, Benson SM (2015) An experimental investigation of stress-dependent permeability and permeability hysteresis behavior in rock fractures. In: Faybishenko B, Benson SM, Gale JE (eds) Dynamics of fluids and transport in complex fractured-porous systems (Geophysical Monograph Series 210). Wiley, Hoboken, pp 99–114Google Scholar
  45. Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70:026117.  https://doi.org/10.1103/PhysRevE.70.026117 Google Scholar
  46. Jackson RL, Green I (2011) On the modeling of elastic contact between rough surfaces. Tribol Trans 54:300–314.  https://doi.org/10.1080/10402004.2010.542277 Google Scholar
  47. Jing L, Rutqvist J, Stephansson O et al (1995) DECOVALEX—Mathematical models of coupled T–H–M processes for nuclear waste repositories: report of phase III. SKI-R–95–80), SwedenGoogle Scholar
  48. Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  49. Jung SJ, Prisbrey K, Wu G (1994) Prediction of rock hardness and drillability using acoustic emission signatures during indentation. Int J Rock Mech Min Sci Geomech Abstr 31:561–567.  https://doi.org/10.1016/0148-9062(94)90159-7 Google Scholar
  50. Kalker JJ, Randen YV (1972) A minimum principle for frictionless elastic contact with application to non-Hertzian half-space contact problems. J Eng Math 6:193–206.  https://doi.org/10.1007/BF01535102 Google Scholar
  51. Katz O, Reches Z, Roegiers JC (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int J Rock Mech Min Sci 37:723–728.  https://doi.org/10.1016/S1365-1609(00)00004-6 Google Scholar
  52. Keusen H, Ganguin J, Schuler P, Buletti M (1989) Grimsel test site–Geology (Technical Report NTB 87-14E). Nagra, Wettingen, SwitzerlandGoogle Scholar
  53. Kim I, Lindquist W, Durham W (2003) Fracture flow simulation using a finite-difference lattice Boltzmann method. Phys Rev E 67:046708.  https://doi.org/10.1103/PhysRevE.67.046708 Google Scholar
  54. Kling T, Huo D, Schwarz JO et al (2016) Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data. Solid Earth 7:1109–1124.  https://doi.org/10.5194/se-7-1109-2016 Google Scholar
  55. Kling T, Schwarz J-O, Wendler F et al (2017) Fracture flow due to hydrothermally induced quartz growth. Adv Water Resour 107:93–107.  https://doi.org/10.1016/j.advwatres.2017.06.011 Google Scholar
  56. Kosakowski G (2004) Anomalous transport of colloids and solutes in a shear zone. J Contam Hydrol 72:23–46.  https://doi.org/10.1016/j.jconhyd.2003.10.005 Google Scholar
  57. Lang PS, Paluszny A, Zimmerman RW (2015) Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures. J Geophys Res Solid Earth 120:4080–4101.  https://doi.org/10.1002/2015jb011968 Google Scholar
  58. Lang PS, Paluszny A, Zimmerman RW (2016) Evolution of fracture normal stiffness due to pressure dissolution and precipitation. Int J Rock Mech Min Sci 88:12–22.  https://doi.org/10.1016/j.ijrmms.2016.06.004 Google Scholar
  59. Lavrov A (2017) Fracture permeability under normal stress: a fully computational approach. J Pet Explor Prod Technol 7:181–194.  https://doi.org/10.1007/s13202-016-0254-6 Google Scholar
  60. Lee SH, Yeo IW, Lee K-K, Detwiler RL (2015) Tail shortening with developing eddies in a rough-walled rock fracture. Geophys Res Lett 42:2015GL065116.  https://doi.org/10.1002/2015GL065116 Google Scholar
  61. Leith W, Robertson E, Bryant B, Boden P (1991) Composition and physical properties of granitic rocks from the NRDC/SAS seismic station sites, Eastern Kazakh SSR. US Geological Survey, Reston, VAGoogle Scholar
  62. Lespinasse M, Sausse J (2000) Quantification of fluid flow: hydro-mechanical behaviour of different natural rough fractures. J Geochem Explor 69–70:483–486.  https://doi.org/10.1016/S0375-6742(00)00111-4 Google Scholar
  63. Li B, Zhao Z, Jiang Y, Jing L (2015) Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment. Int J Numer Anal Methods Geomech 39:1431–1449.  https://doi.org/10.1002/nag.2365 Google Scholar
  64. Liu H-H, Wei M-Y, Rutqvist J (2013) Normal-stress dependence of fracture hydraulic properties including two-phase flow properties. Hydrogeol J 21:371–382.  https://doi.org/10.1007/s10040-012-0915-6 Google Scholar
  65. Love AEH (1929) The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos Trans R Soc Lond Ser Contain Pap Math Phys Char 228:377–420.  https://doi.org/10.1098/rsta.1929.0009 Google Scholar
  66. Matsuki K, Chida Y, Sakaguchi K, Glover PWJ (2006) Size effect on aperture and permeability of a fracture as estimated in large synthetic fractures. Int J Rock Mech Min Sci 43:726–755.  https://doi.org/10.1016/j.ijrmms.2005.12.001 Google Scholar
  67. Matsuki K, Wang EQ, Giwelli AA, Sakaguchi K (2008) Estimation of closure of a fracture under normal stress based on aperture data. Int J Rock Mech Min Sci 45:194–209.  https://doi.org/10.1016/j.ijrmms.2007.04.009 Google Scholar
  68. Méheust Y, Schmittbuhl J (2001) Geometrical heterogeneities and permeability anisotropy of rough fractures. J Geophys Res Solid Earth 106:2089–2102.  https://doi.org/10.1029/2000jb900306 Google Scholar
  69. Momber AW (2015) Fracture toughness effects in geomaterial solid particle erosion. Rock Mech Rock Eng 48:1573–1588.  https://doi.org/10.1007/s00603-014-0658-x Google Scholar
  70. Muralidharan V, Chakravarthy D, Putra E, Schechter DS (2004) Investigating fracture Aperture distributions under various stress conditions using X-ray CT scanner. In: Canadian International Petroleum Conference. Petroleum Society of Canada, PETSOC, p 14Google Scholar
  71. Nemoto K, Watanabe N, Hirano N, Tsuchiya N (2009) Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution. Earth Planet Sci Lett 281:81–87.  https://doi.org/10.1016/j.epsl.2009.02.005 Google Scholar
  72. Nolte DD, Pyrak-Nolte LJ (1991) Stratified continuum percolation: scaling geometry of hierarchical cascades. Phys Rev A 44:6320–6333.  https://doi.org/10.1103/PhysRevA.44.6320 Google Scholar
  73. Nolte DD, Pyrak-Nolte LJ, Cook NGW (1989) The fractal geometry of flow paths in natural fractures in rock and the approach to percolation. Pure Appl Geophys 131:111–138.  https://doi.org/10.1007/bf00874483 Google Scholar
  74. Ogilvie SR, Isakov E, Taylor CW, Glover PWJ (2003) Characterization of rough-walled fractures in crystalline rocks. Geol Soc Lond Spec Publ 214:125–141.  https://doi.org/10.1144/gsl.sp.2003.214.01.08 Google Scholar
  75. Ogilvie SR, Isakov E, Glover PWJ (2006) Fluid flow through rough fractures in rocks. II: a new matching model for rough rock fractures. Earth Planet Sci Lett 241:454–465.  https://doi.org/10.1016/j.epsl.2005.11.041 Google Scholar
  76. Ohnishi Y, Chan T, Jing L (1996) Constitutive models for rock joints. In: Stephansson O, Jing L, Tsang C-F (eds) Developments in geotechnical engineering. Elsevier, pp 57–92Google Scholar
  77. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583.  https://doi.org/10.1557/jmr.1992.1564 Google Scholar
  78. Oron AP, Berkowitz B (1998) Flow in rock fractures—the local cubic law assumption reexamined. Water Resour Res 34:2811–2825.  https://doi.org/10.1029/98wr02285 Google Scholar
  79. Pabst W, Gregorova E (2013) Elastic properties of silica polymorphs-a review. Ceram-Silik 57:167–184Google Scholar
  80. Pastewka L, Robbins MO (2016) Contact area of rough spheres: large scale simulations and simple scaling laws. Appl Phys Lett 108:221601.  https://doi.org/10.1063/1.4950802 Google Scholar
  81. Pastewka L, Sharp TA, Robbins MO (2012) Seamless elastic boundaries for atomistic calculations. Phys Rev B 86:075459.  https://doi.org/10.1103/PhysRevB.86.075459 Google Scholar
  82. Pastewka L, Prodanov N, Lorenz B et al (2013) Finite-size scaling in the interfacial stiffness of rough elastic contacts. Phys Rev E 87:062809.  https://doi.org/10.1103/PhysRevE.87.062809 Google Scholar
  83. Pei L, Hyun S, Molinari JF, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53:2385–2409.  https://doi.org/10.1016/j.jmps.2005.06.008 Google Scholar
  84. Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115:3840–3861.  https://doi.org/10.1063/1.1388626 Google Scholar
  85. Persson BNJ (2007) Relation between interfacial separation and load: a general theory of contact mechanics. Phys Rev Lett 99:125502.  https://doi.org/10.1103/PhysRevLett.99.125502 Google Scholar
  86. Polonsky IA, Keer LM (1999) A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231:206–219.  https://doi.org/10.1016/S0043-1648(99)00113-1 Google Scholar
  87. Power WL, Durham WB (1997) Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration. Int J Rock Mech Min Sci 34:979–989.  https://doi.org/10.1016/S1365-1609(97)80007-X Google Scholar
  88. Přikryl R (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng Geol 87:149–162.  https://doi.org/10.1016/j.enggeo.2006.05.011 Google Scholar
  89. Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37:245–262.  https://doi.org/10.1016/S1365-1609(99)00104-5 Google Scholar
  90. Pyrak-Nolte LJ, Nolte DD (2016) Approaching a universal scaling relationship between fracture stiffness and fluid flow. Nat Commun 7:10663.  https://doi.org/10.1038/ncomms10663 Google Scholar
  91. Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40.  https://doi.org/10.1007/s10040-002-0241-5 Google Scholar
  92. Rutqvist J, Tsang C-F (2003) Analysis of thermal–hydrologic–mechanical behavior near an emplacement drift at Yucca Mountain. J Contam Hydrol 62:637–652.  https://doi.org/10.1016/S0169-7722(02)00184-5 Google Scholar
  93. Schild M, Siegesmund S, Vollbrecht A, Mazurek M (2001) Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods. Geophys J Int 146:111–125.  https://doi.org/10.1046/j.0956-540x.2001.01427.x Google Scholar
  94. Seiedi O, Rahbar M, Nabipour M et al (2011) Atomic Force Microscopy (AFM) investigation on the surfactant wettability alteration mechanism of aged mica mineral surfaces. Energy Fuels 25:183–188.  https://doi.org/10.1021/ef100699t Google Scholar
  95. Souley M, Lopez P, Boulon M, Thoraval A (2015) Experimental hydromechanical characterization and numerical modelling of a fractured and porous sandstone. Rock Mech Rock Eng 48:1143–1161.  https://doi.org/10.1007/s00603-014-0626-5 Google Scholar
  96. Sousa LMO (2014) Petrophysical properties and durability of granites employed as building stone: a comprehensive evaluation. Bull Eng Geol Environ 73:569–588.  https://doi.org/10.1007/s10064-013-0553-9 Google Scholar
  97. Stanley HM, Kato T (1997) An FFT-based method for rough surface contact. J Tribol 119:481–485.  https://doi.org/10.1115/1.2833523 Google Scholar
  98. Swain MV, Lawn BR (1976) Indentation fracture in brittle rocks and glasses. Int J Rock Mech Min Sci Geomech Abstr 13:311–319.  https://doi.org/10.1016/0148-9062(76)91830-1 Google Scholar
  99. Swan G (1983) Determination of stiffness and other joint properties from roughness measurements. Rock Mech Rock Eng 16:19–38.  https://doi.org/10.1007/bf01030216 Google Scholar
  100. Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property. relationships. Chem Soc Rev 40:1059–1080.  https://doi.org/10.1039/c0cs00163e Google Scholar
  101. Tatone BSA, Grasselli G (2012) Quantitative measurements of fracture aperture and directional roughness from rock cores. Rock Mech Rock Eng 45:619–629.  https://doi.org/10.1007/s00603-011-0219-5 Google Scholar
  102. Tsang YW (1984) The effect of tortuosity on fluid flow through a single fracture. Water Resour Res 20:1209–1215.  https://doi.org/10.1029/WR020i009p01209 Google Scholar
  103. Tuğrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317.  https://doi.org/10.1016/S0013-7952(98)00071-4 Google Scholar
  104. van Genabeek O, Rothman DH (1999) Critical behavior in flow through a rough-walled channel. Phys Lett A 255:31–36.  https://doi.org/10.1016/S0375-9601(99)00152-8 Google Scholar
  105. Vogler D (2016) Hydro-mechanically coupled processes in heterogeneous fractures: experiments and numerical simulations. Dissertation, ETH ZurichGoogle Scholar
  106. Vogler D, Amann F, Bayer P, Elsworth D (2016a) Permeability evolution in natural fractures subject to cyclic loading and gouge formation. Rock Mech Rock Eng 49:3463–3479.  https://doi.org/10.1007/s00603-016-1022-0 Google Scholar
  107. Vogler D, Settgast RR, Annavarapu C et al (2016b) Hydro-mechanically coupled flow through heterogeneous fractures. In: Proceedings of the 41st Workshop on Geothermal Reservoir Engineering. Stanford University (California), p SGP-TR-209Google Scholar
  108. Vogler D, Walsh SDC, Bayer P, Amann F (2017) Comparison of surface properties in natural and artificially generated fractures in a crystalline rock. Rock Mech Rock Eng 50:2891–2909.  https://doi.org/10.1007/s00603-017-1281-4 Google Scholar
  109. Vogler D, Settgast RR, Annavarapu C et al (2018) Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high pressure fluid injection. J Geophys Res Solid Earth 123:1186–1200.  https://doi.org/10.1002/2017JB015057 Google Scholar
  110. Walsh JB, Brown SR, Durham WB (1997) Effective media theory with spatial correlation for flow in a fracture. J Geophys Res Solid Earth 102:22587–22594.  https://doi.org/10.1029/97jb01895 Google Scholar
  111. Walsh R, McDermott C, Kolditz O (2008) Numerical modeling of stress-permeability coupling in rough fractures. Hydrogeol J 16:613.  https://doi.org/10.1007/s10040-007-0254-1 Google Scholar
  112. Wang L, Cardenas MB (2016) Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments. J Geophys Res Solid Earth 121:4977–4989.  https://doi.org/10.1002/2016jb013004 Google Scholar
  113. Watanabe N, Hirano N, Tamagawa T et al (2005) Numerical estimation of aperture structure and flow wetted field in rock fracture. Geotherm Resour Counc Trans 29:431–436Google Scholar
  114. Watanabe N, Hirano N, Tsuchiya N (2008) Determination of aperture structure and fluid flow in a rock fracture by high-resolution numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resour Res 44:W06412.  https://doi.org/10.1029/2006wr005411 Google Scholar
  115. Wehrens P, Baumberger R, Berger A, Herwegh M (2017) How is strain localized in a meta-granitoid, mid-crustal basement section? Spatial distribution of deformation in the central Aar massif (Switzerland). J Struct Geol 94:47–67.  https://doi.org/10.1016/j.jsg.2016.11.004 Google Scholar
  116. Winchell H (1945) The Knoop microhardness tester as a mineralogical tool. Am Miner 30:583–595Google Scholar
  117. Wu W, Sharma MM (2017) A model for the conductivity and compliance of unpropped fractures. In: SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers, SPE, p 29Google Scholar
  118. Yang C, Persson BNJ (2008) Contact mechanics: contact area and interfacial separation from small contact to full contact. J Phys Condens Matter 20:215214.  https://doi.org/10.1088/0953-8984/20/21/215214 Google Scholar
  119. Yang Z, Niemi A, Fagerlund F, Illangasekare T (2013) Two-phase flow in rough-walled fractures: comparison of continuum and invasion-percolation models. Water Resour Res 49:993–1002.  https://doi.org/10.1002/wrcr.20111 Google Scholar
  120. Yasuhara H, Kinoshita N, Ohfuji H et al (2011) Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model. Appl Geochem 26:2074–2088.  https://doi.org/10.1016/j.apgeochem.2011.07.005 Google Scholar
  121. Ye Z, Liu H-H, Jiang Q, Zhou C (2015) Two-phase flow properties of a horizontal fracture: the effect of aperture distribution. Adv Water Resour 76:43–54.  https://doi.org/10.1016/j.advwatres.2014.12.001 Google Scholar
  122. Yoshioka N (1994a) Elastic behavior of contacting surfaces under normal loads: a computer simulation using three-dimensional surface topographies. J Geophys Res Solid Earth 99:15549–15560.  https://doi.org/10.1029/94jb00938 Google Scholar
  123. Yoshioka N (1994b) The role of plastic deformation in normal loading and unloading cycles. J Geophys Res Solid Earth 99:15561–15568.  https://doi.org/10.1029/94jb00931 Google Scholar
  124. Zhao Z, Jing L, Neretnieks I, Moreno L (2011) Analytical solution of coupled stress-flow-transport processes in a single rock fracture. Comput Geosci 37:1437–1449.  https://doi.org/10.1016/j.cageo.2011.02.015 Google Scholar
  125. Zichella L, Bellopede R, Marini P et al (2017) Diamond wire cutting: a methodology to evaluate stone workability. Mater Manuf Process 1–7.  https://doi.org/10.1080/10426914.2016.1269912
  126. Zimmerman RW (1985) The effect of microcracks on the elastic moduli of brittle materials. J Mater Sci Lett 4:1457–1460.  https://doi.org/10.1007/bf00721363 Google Scholar
  127. Zimmerman R, Bodvarsson G (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30.  https://doi.org/10.1007/bf00145263 Google Scholar
  128. Zimmerman RW, Chen D-W, Cook NGW (1992) The effect of contact area on the permeability of fractures. J Hydrol 139:79–96.  https://doi.org/10.1016/0022-1694(92)90196-3 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Geosciences (AGW)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Geothermal Energy and Geofluids, Institute of GeophysicsETH ZurichZurichSwitzerland
  3. 3.Transport Processes and Reactions Laboratory, Institute of Process EngineeringETH ZurichZurichSwitzerland
  4. 4.Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  5. 5.Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  6. 6.Chair of Engineering GeologyRWTH AachenAachenGermany

Personalised recommendations