Advertisement

Rock Mechanics and Rock Engineering

, Volume 51, Issue 6, pp 1777–1787 | Cite as

Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations

  • N. Guy
  • D. M. Seyedi
  • F. Hild
Original Paper
  • 236 Downloads

Abstract

The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.

Keywords

Crack network Fracture toughness Nonlocal damage Rock fracturing Weibull model 

List of Symbols

\({\varvec{\sigma }}\)

Stress tensor

\(\overline{{\varvec{\sigma }}}\)

Regularized stress tensor

\(\ell _{\mathrm{c}}\)

Characteristic length

\({\varDelta }\)

Laplacian operator

\({\varvec{n}}\)

Normal to surface

\(P_{\mathrm{i}}\)

Crack initiation probability

\(S_{\mathrm{i}}\)

Crack initiation stress

\(\frac{\sigma _{0}^{m}}{\lambda _{0}}\)

Scale parameter

\(V_{\mathrm{el}}\)

Volume of an element

m

Weibull modulus

\(\sigma _{\ell _{\mathrm{c}}}\)

Nominal stress

\(S_{\mathrm{g}}\)

Crack growth stress

\(K_{\mathrm{c}}\)

Fracture toughness

\({\varGamma }\)

Gamma function

\(\rho\)

Mass density

d

Damage

\(\psi _{\mathrm{e}}\)

State potential

\({\mathcal {C}}\)

Hooke’s tensor

\({\varvec{\epsilon }}\)

Infinitesimal strain tensor

Y

Thermodynamic force associated with damage

\(H_{\mathrm{e}}\)

Heaviside function

\({\overline{\sigma }}_{\mathrm{I}}\)

Maximum principal regularized stress

a

Half-length of critical defect

\(\sigma _{\mathrm{w}}\)

Weibull stress

\(\sigma _{\mathrm{w}i}\)

Weibull stress associated with sample i

\(P_{\mathrm{F}}\)

Failure probability

\(P_{\mathrm{F}i}\)

Failure probability associated with sample i

\(\sigma_{\mathrm{f}}\)

Critical maximum principal stress

H

Stress heterogeneity factor

V

Sample volume

\(H_{\mathrm{br}}\)

Stress heterogeneity factor for Brazilian test

\(V_{\mathrm{br}}\)

Sample volume for Brazilian test

\(H_{\mathrm{fl}}\)

Stress heterogeneity factor for three-point flexural test

\(V_{\mathrm{fl}}\)

Sample volume for three-point flexural test

\(n_{\mathrm{s}}\)

Total number of samples

R

Radius of Brazilian test sample

L

Length of Brazilian test sample

\(K_{\mathrm{I}}\)

Mode I stress intensity factor

\(K_{\mathrm{II}}\)

Mode II stress intensity factor

\(r_{\mathrm{K}}\)

Ratio between mode II and mode I stress intensity factors

Notes

Acknowledgements

This work was funded by BRGM through an “Institut Carnot” research Grant. The authors wish to thank Dr. Steve Whittaker and Saskatchewan Industry and Resource for kindly providing the samples of Lower Watrous caprock.

References

  1. Baecher GB, Einstein HH (1981) Scale effect in rock testing. Geophys Res Let 8:671–674CrossRefGoogle Scholar
  2. Baghbanan A, Lanru J (2007) Hydraulic properties of fractured masses with correlated fracture length and aperture. Int J R Mech Min Sci 44:704–719CrossRefGoogle Scholar
  3. Bažant Z, Belytschko TB (1985) Wave propagation in strain-softening bar: exact solution. J Eng Mech 111:381–389CrossRefGoogle Scholar
  4. Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55:521–539Google Scholar
  5. Beremin FM (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans 14:2277–2287CrossRefGoogle Scholar
  6. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–804CrossRefGoogle Scholar
  7. Bush AJ (1976) Experimentally determined stress-intensity factors for single-edge-crack round bars in bending. Exp Mech 16:249–257CrossRefGoogle Scholar
  8. Code_Aster (2010). EDF R&D. http://www.code-aster.org. Accessed 1 June 2010
  9. Da Silva ACR, Proença SPB, Billardon R, Hild F (2004) Probabilistic approach to predict cracking in lightly reinforced microconcrete panels. J Eng Mech 130:931–941CrossRefGoogle Scholar
  10. De Borst R, Sluys LJ, Muhlaus HB, Pamin J (1993) Fundamental issues in finite element analysis of localization of deformation. Eng Comput 10:99–121CrossRefGoogle Scholar
  11. Forquin P, Rota L, Charles Y, Hild F (2004) A method to determine the macroscopic toughness scatter of brittle materials. Eur J Mech A Solids 125:171–187Google Scholar
  12. Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J R Mech Min Sci 41:927–938CrossRefGoogle Scholar
  13. Gosh A (1999) A FORTRAN program for fitting Weibull distribution and generating samples. Comput Geosci 25:729–738CrossRefGoogle Scholar
  14. Guy N (2010) Modélisation probabiliste de l’endommagement des roches : application au stockage géologique du \({\text{CO}}_2\). Ph.D. thesis, Ecole Normale Supérieure de CachanGoogle Scholar
  15. Guy N, Seyedi D, Hild F (2010) Hydro-mechanical modelling of geological CO\(_{2}\) storage and the study of possible caprock fracture mechanisms. Georisk 4:110–117Google Scholar
  16. Guy N, Seyedi D, Hild F (2012) A probabilistic nonlocal model for crack initiation and propagation in heterogeneous brittle materials. Int J Numer Methods Eng 90:1053–1072Google Scholar
  17. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42:69–80CrossRefGoogle Scholar
  18. Jobmann M, Wilsnack T, Voigt HD (2010) Investigation of damage induced permeability of Opalinus clay. Int J R Mech Min Sci 47:279–285CrossRefGoogle Scholar
  19. Kanninen MF, Brust FW, Ahmad J, Abou-Sayed IS (1982) The numerical simulation of crack growth in weld-induced residual stress fields. In: Kula E, Weiss V (eds) Residual stress and stress relaxation. Plenum Press, New York, pp 975–986Google Scholar
  20. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24:581–597CrossRefGoogle Scholar
  21. Lawn BR (1993) Fracture of brittle material. Cambridge University Press, CambridgeGoogle Scholar
  22. Le Nindre YM, Gauss I (2004) Characterisation of the lower watrous aquitard as major seal for \({\text{ CO }}_2\) geological sequestration. In: 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5–9 SeptGoogle Scholar
  23. Lorentz E, Benallal A (2005) Gradient constitutive relations: numerical aspects and application to gradient damage. Comput Methods Appl Mech Eng 194:5191–5220CrossRefGoogle Scholar
  24. Lyakhovsky V, Hamiel Y, Ben-Zion Y (2011) A non-local visco-elastic damage model and dynamic fracturing. J Mech Phys Solids 59:1752–1776CrossRefGoogle Scholar
  25. Murakami Y (1987) Stress intensity factors handbook. Pergamon Press, OxfordGoogle Scholar
  26. Nose T, Fuji T (1988) Evaluation of fracture toughness for ceramics materials by a single-edge-precracked-beam method. J Am Ceram Soc 71:328–333CrossRefGoogle Scholar
  27. Ouchterlony F (1988) ISRM commission on testing methods; suggested methods for determining fracture toughness of rock. Int J R Mech Min Sci 25:71–96Google Scholar
  28. Pancheri P, Bosetti P, Dal Maschio R, Sglavo VM (1998) Production of sharp cracks in ceramic materials by three-point bending of sandwiched specimens. Eng Frac Mech 59:447–456CrossRefGoogle Scholar
  29. Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes Frict Mater 3:323–342CrossRefGoogle Scholar
  30. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of non-local and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746CrossRefGoogle Scholar
  31. Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17:327–334CrossRefGoogle Scholar
  32. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533CrossRefGoogle Scholar
  33. Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn \({\text{ CO }}_2\) monitoring and storage project. Fuel Process Technol 86:1547–1568CrossRefGoogle Scholar
  34. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157CrossRefGoogle Scholar
  35. Srawley JE (1976) Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens. Int J Frac 12:475–476Google Scholar
  36. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  37. Triantafyllidis N, Aifantis EC (1986) A gradient approach to localization of deformation: I. Hyperelastic materials. J Elast 16:225–237CrossRefGoogle Scholar
  38. Weibull W (1939) A statistical theory of the strength of materials. Generalstabens Litografiska Anstalts Förlag, StockholmGoogle Scholar
  39. Wu D, Zhou J, Li Y (2006) Unbiased estimation of Weibull parameters with the linear regression method. J Eur Ceram Soc 26:1099–1105CrossRefGoogle Scholar
  40. Zuo JP, He-Ping X, Feng D, Yang J (2014) Three point bending test investigation of the fracture behavior of siltstone after thermal treatment. Int J R Mech Min Sci 70:133–143Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BRGM, Natural Risks and CO2 Storage Safety DivisionOrléansFrance
  2. 2.IFP Energies NouvellesRueil-Malmaison CedexFrance
  3. 3.Andra, R & D DivisionChatenay-MalabryFrance
  4. 4.LMT, ENS Paris-Saclay / CNRS / Université Paris-SaclayCachan CedexFrance

Personalised recommendations